

FACULTY OF PSYCHOLOGY AND **EDUCATIONAL SCIENCES**

Evaluation of bootstrap procedures for fMRI data

Roels S., Loeys T. and Moerkerke B.

Department of data analysis, Ghent University

sanne.roels@ugent.be

Problem

- ◇ Bootstrap procedures for fMRI time series have become popular: e.g. thresholding, ...
- Friman and Westin (2005)[1]: in *blocked* designs GLM-based pre-whitening better than Fourier or Wavelet decomposition
- fMRI data is both spatially and temporally complex

Goals

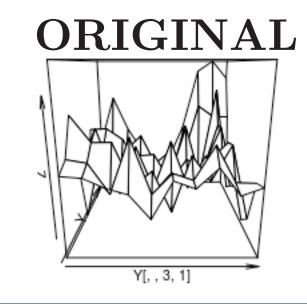
- Account for data complexity while bootstrapping
- ♦ Focus on spatial and temporal reconstructability of the original volume

 \diamond whitening: parametric noise model \leftrightarrow blocked: model-free noise model [2]

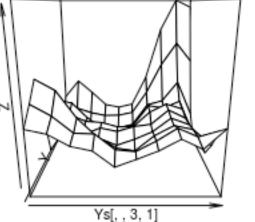
Smoothing heavily affects the data: should it occur before or after bootstrapping?

Resampling GLM-residuals

- \diamond fMRI data analysed typically using $Y_{it} = X_{it}\beta + \epsilon_{it}$ with $\epsilon_i \sim N(0, \mathbf{V}\sigma^2)$ for each voxel i and time point t
- \diamond In SPM8: WVW' = I with W is estimated as quasiAR(1) structure
- $\diamond e_{white} = We_{raw} = Wy_i Wx_i \hat{\beta}$ assumed to be uncorrelated BUT $E(e_{white}) \neq 0$


 \diamond Whitening bootstrap uses e_{white} and blocked bootstrap uses e_{raw}

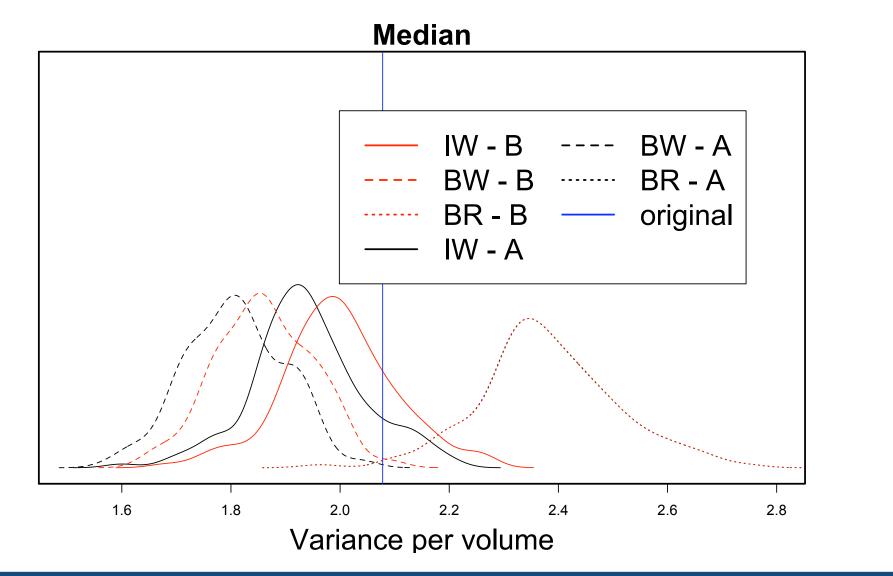
- \diamond we use **centered studentized**[3] residuals for e_{white} and for e_{raw} : scaled by $(\sqrt{1-h_{ii}})^{-1}$: h_{ii} diagonal element of $WX(WX^TWX)^{-1}WX^T$
- \diamond 3 scenarios: Independent resampling e_{white} (IW), blocked resampling e_{raw} (BR) and blocked resampling e_{white} (BW) with spatial composition retained over bootstrap sequence by individual resampling over all voxels


♦ Comparison of blocked bootstrap (BR), pre-whitening bootstrap(W) and combination of both[3] (BW) as bootstrap procedures for the resampling of **GLM-residuals**

Smoothing

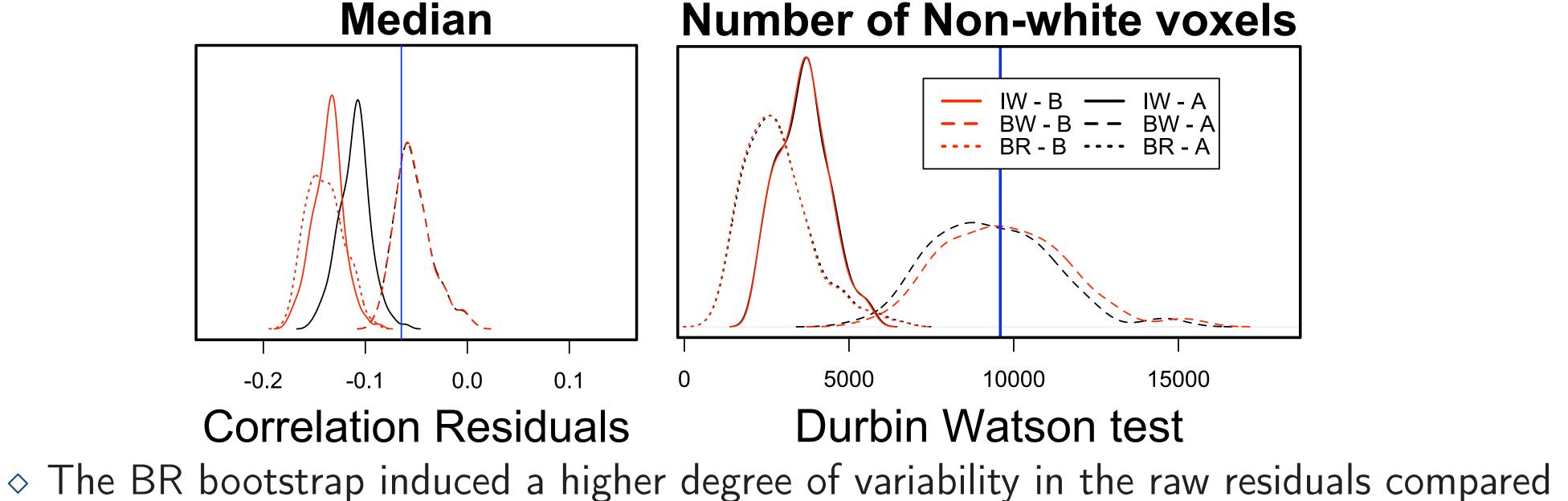
- ♦ Typical isotropic Gaussian 6mm kernel
- Impact on signal *itself* and noise model
- ♦ 3 scenarios: (B) Before bootstrap, (A) after bootstrap or (BA) both ?

Exploration on the SPM auditory dataset [4]


Comparison of spatial and temporal properties of the 150 bootstrap samples versus properties of the original data

 \diamond We evaluate raw residuals : $e_{raw} = Ky_i - Kx_i \hat{\beta}$, with K = standard 128 s cut-off high-pass filter to compare the bootstrapped volumes with the original volume

◇ For both BW and BR bootstrap scheme blocks of 7 observation were used ("optimal" block length)


Spatial reconstructability

- ♦ BA smoothing, bootstrap samples are too smooth (up to twice as smooth) Smoothness is preserved well in both B and A
- ♦ Spatial variability has no clear pattern

Temporal reconstructability

- Result of BA smoothing are omitted due to too little variation
- Ourbin Watson test statistic is based on the whitened residuals of the bootstrapped volumes

to the other bootstrap schemes

Conclusions

- Smoothing locus Small differences B or A, but BA is too smooth ♦ Bootstrap scheme BW preserves the temporal correlation in the residuals Spatial variability needs further exploration
- Confirmation needed from other datasets and from simulation studies

Remarks

- ◇ Auditory dataset is an old dataset with long TR
- ♦ Limited amount of smoothing (6 mm)
- ◇ No impact of block length investigated yet

References

- Friman, O, & Westin, C-F (2005). Resampling fMRI time serie, NeuroImage, 25, 859-867.
- [2] Lahiri, S.N. (2003). Resampling methods for dependent data, Springer.
- [3] Davison, A.C & Hinkley, D.V. (1997). Bootstrap Methods and their Applications, Cambridge University Press.
- Friston, Karl et al. (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images, Elsevier Ltd./Academic Press