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Abstract

Providing explanations of language comprehension requires
models that describe language processing and display strong
systematicity. Although various extensions of connectionist
models have been suggested in order to account for this phe-
nomenon, we found that even a simple recurrent network that
had been trained in a way that can be considered ‘standard’,
could display strong systematicity. This ability was found to
result from informative word representations that developed in
the network.
Keywords: Simple Recurrent Network; Systematicity; Sen-
tence Processing; Word Representations; Hierarchical Cluster
Analysis.

Introduction
Models that want to account for natural language sentence
processing also have to explain how humans can produce a
large number of novel sentences after being exposed to a fi-
nite number of utterances. This ability of a model to com-
bine words in new ways is often referred to as systematic-
ity1. Fodor and Pylyshyn (1988) argued that connectionist
networks are intrinsically unable to display systematicity un-
less they implement a symbol system.

To display systematicity, a network needs to generalize. A
model generalizes successfully if it learns regularities from a
set of training data that allow it to increase its performance
on processing data that has not been encountered before. Ac-
cording to Hadley (1994), one can divide the extent to which
this generalization is necessary for sentence processing into
weak and strong systematicity. Weak systematicity is the
ability to process sentences that are different from the sen-
tences the system was trained on but have words occurring in
the same positions as during training. An example of this is
when someone learns from sentences 1a and 1b to understand
sentence 1c as well.

(1) a. Dogs follow men

b. Women follow dogs

c. Women follow men

Strong systematicity requires more abstraction and is defined
as the ability to process test sentences with words occurring
in different positions than in the training sentences. An ex-
ample of strong systematicity is when someone is exposed
to sentences 2a and 2b and learns from those how to process
sentence 2c.

(2) a. Dogs follow men

1Not to be confused with the possibility of an infinite number of
grammatical sentences in a language which would be generativity.

b. Women follow dogs

c. Men follow women

Moreover, the model should also be able to process sentences
that contain embedded clauses with words occurring in novel
positions.

Hadley (1994) argues that humans display strong system-
aticity. He continues that connectionist models have been
shown to display weak systematicity but that it has yet to be
shown that they display strong systematicity as well. Strong
systematicity is the type of systematicity that we will test neu-
ral networks on in this paper.

It has been argued that merely demonstrating systematicity
in a neural network does not suffice to disprove the claims by
Fodor and Pylyshyn (1988). Rather, it needs to be shown that
connectionist systematicity (without merely implementing a
symbol system) is not only possible, but necessarily follows
from the network’s architecture (Aizawa, 1997). As Fodor
and McLaughlin (1990) put it, it is a law (and not just an
accident) that cognition is systematic.

Although this law-requirement has been questioned (e.g.,
Hadley, 1997), we do agree that, for demonstrations of con-
nectionist systematicity to be convincing, they should not
depend on some arbitrary arrangement of the system or the
training regime, nor on architectures or representations that
were developed for obtaining systematic behavior. Moreover,
systematicity should arise robustly and in a variety of circum-
stances, rather than showing up in just one or a few instances.

Many demonstrations of connectionist systematicity have
not met these standards. For example, Christiansen and
Chater (1994) showed some indication of strong systematic-
ity with a simple recurrent network in a single simulation, but
without carrying out a thorough quantitative analysis. Ad-
ditionally, Hadley, Rotaru-Varga, Arnold, and Cardei (2001)
showed systematicity with a hebbian competitive network
while explicitly adding semantic information to obtain this
goal. Bodén (2004) used a specially designed cascaded archi-
tecture to obtain systematic behavior with recurrent networks.
Recently, Frank and Čerňanský (2008) showed sytematicity
in a recurrent neural network but only when supplying it with
pre-arranged input representations. Again, this extension was
included just to obtain systematic behavior. Besides the re-
search of Christiansen and Chater (1994), all these earlier at-
tempts utilised network architectures or representations that
had been recruited for the purpose of showing systematicity.
By doing so, little evidence is provided for a more general
display of generalization that is robust and independent of the
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specific circumstances.
In the current paper, we show that even a standard neu-

ral network architecture for sentence processing can display
strong systematicity in a large number of test inputs, without
requiring a special training regime or any information that is
not available from the training data. We argue that it does so
without implementing a symbol system.

Simple recurrent networks
The best known neural network architecture that can process
sequential information is the simple recurrent network (El-
man, 1990) (SRN). SRNs can learn various types of depen-
dencies in the presented data and represent quite complex
automata. We chose to use this architecture because it is
very common in language modeling and able to update both
the way it represents data and the way it uses data to pre-
dict new words. This is unlike the echo state network Frank
and Čerňanský (2008) used. In echo state networks, only the
weights to the output layer are being trained. Therefore, the
echo state network does not change the way it represents data
and Frank and Čerňanský (2008) had to explicitly construct
input representations in advance in order to obtain strong sys-
tematicity. By using an SRN in the current study, we will not
use any external means to obtain input representations that
are based on prior intuitions.

Prediction and systematicity
One way to investigate the ability of SRNs to generalize (and
display strong systematicity) is to present sentences to them
and train them to predict upcoming words. It is not possible to
predict the next word of a sentence with certainty, so the goal
of the prediction tasks is to estimate a probability distribution
over the words in the lexicon.

We used a probabilistic context-free grammar to generate
training and test sentences. After this, we used the prediction
task to investigate how well a network does at discovering the
underlying generator of the artificial language. In the original
grammar of this language, all nouns are treated equally and
can appear in all positions that a noun can normally appear in.
During training however, a distinction is made among differ-
ent types of nouns based on gender. This restricts the precise
grammatical roles the nouns can take in a sentence. The test
sentences contain the same nouns but in grammatical roles in
which they never appeared during training. The only way to
still perform well on word prediction, is to discover that there
is a general category of nouns that can appear in all those po-
sitions regardless of gender. The model has to display strong
systematicity by learning that the words can also form sen-
tences by appearing in different positions than the ones they
appeared in during training.

Measuring systematicity
As a criterion for strong systematicity, Frank and Čerňanský
(2008) argued that a model should outperform the best nth or-
der Markov model that has been constructed from the train-
ing data. In a Markov model, the probability of each possible

upcoming word depends on a specific number of preceding
words in the current sentence. Formally this means that, ac-
cording to an nth order Markov model, the probability that a
certain word i will follow a sequence that is n words long is
defined as

Pr(i|wt−n, . . . ,wt−) =
N(wt−n, . . . ,wt−, i)
N(wt−n, . . . ,wt−)

, (1)

where N(·) gives the number of occurrences of its argument
in the training data. This definition entails that a 0th order
Markov model (unigram) is just based on the frequency of
the word itself. A 1st order Markov model (bigram) depends
just on the relative frequency of the upcoming word and the
number of times that it was seen given the current word in the
sequence. Larger values for n do not always result in better
performance.

Whenever a Markov model processes a combination of
words that did not appear in the training data, it can only base
its prediction on the last words that form a combination that
did occur in the training data and on the frequencies of the dif-
ferent words. This makes it impossible for the Markov model
to use words that appear earlier in the sentence. For this rea-
son Markov models don’t take into account dependencies that
are based on discontiguous word co-occurrences. The perfor-
mance of the best Markov model can be seen as the best a
well-trained but non-systematic model can do with the cur-
rent data. This implies that obtaining a higher performance
than the best Markov model requires the ability to display
systematicity and learn aspects of the data that are useful for
dealing with new unobserved combinations.

The bigrams, trigrams or greatest nth order Markov models
might not always be the Markov models with the highest per-
formance. For this reason, comparing with the performance
of just one of these Markov models might result in classify-
ing other models as systematic too easily if another Markov
model with better performance exists. To classify a model as
systematic, it is not sufficient to just compare it with bigrams
and trigrams or with the greatest nth order Markov model as
done by Tong, Bickett, Christiansen, and Cottrell (2007) and
Frank (2006), respectively. Systematicity (and particularly
strong systematicity), should be impossible to achieve for any
nth order Markov model. The Markov model that serves as a
baseline should be the one that achieves the best performance
for the current sequence. This requires calculating all nth or-
der Markov models for the current sequence until the begin-
ning of the sentence has been reached and deciding which
n-gram performs best afterwards.

Normally one could not use the best nth order Markov
models to find regularities in sequential data as described
above because it is impossible to select the best performing
model without already knowing the true underlying probabil-
ities. However, in the context of the current research, this
information is available. The best Markov model should not
be seen as a language model but as a baseline model that has
been made very strict by providing it with prior knowledge.
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Table 1: The Probabilistic grammar that underlies the arti-
ficial language used in the experiment. Variable r denotes
grammatical role. When the probabilities of different pro-
ductions are not equal they are indicated within parentheses.

S → NPsub j V NPob j [end]
NPr → Nr (.7) | Nr SRC (.06) | Nr ORC (.) |

Nr PPr (.)
SRC → that V NPob j
ORC → that NPsub j V
PPr → from NPr | with NPr
Nr → N f em | Nmale | Nanim
N f em → women | girls | sisters
Nmale → men | boys | brothers
Nanim → bats | giraffes | elephants | dogs | cats | mice
V → chase | see | swing | love | avoid | follow |

hate | hit | eat | like

Even with the availability of prior knowledge, the Markov
models might not perform well because of their discrete way
of handling unseen information. Normally, the Markov mod-
els would assign a probability of zero to word combinations
that have not been encountered yet. This could allow a nois-
ier model to outperform the Markov models in these cases
without truly displaying systematicity.

For these reasons, and unlike Frank and Čerňanský (2008),
we will use the smoothed best nth order Markov models as a
baseline. We applied Laplace smoothing where the frequency
of unseen combinations was assumed to be one instead of
zero. Earlier tests showed that the application of smoothing
resulted in slightly better performance for the best Markov
models so it makes the baseline even more strict.

Experiment
Language
To generate training and test sentences, the same probabilistic
context-free grammar was used as in the experiment by Frank
and Čerňanský (2008). This language has 26 different words.
From these words, 12 are nouns, 10 are transitive verbs and
2 are prepositions. There are also a relative clause marker
and an end-of-sentence marker. Its production rules (see Ta-
ble 1) allowed for complex sentences, containing for example
center-embedded clauses.

Training sentences
Training sentences were created following the rules of the ar-
tificial grammar in Table 1 but with some extra restrictions
so that only a subset of all possible sentences was generated.
This was done by replacing the Nr production rule with two
rules stating that the subject of a sentence always had to be
either a female noun or an animal noun and the object al-
ways a male noun or an animal noun (see Table 2). These
rules are not part of the original underlying grammar. The set

Table 2: Production rules replacing Nr that were used for gen-
erating the training sentences.

Nsub j → N f em | Nanim
Nob j → Nmale | Nanim

Table 3: The four types of sentences that were used for testing
on systematicity.

SRC1: Nmale that V N f em V N f em [end]
SRC2: Nmale V N f em that V N f em [end]
ORC1: Nmale that Nmale V V N f em [end]
ORC2: Nmale V N f em that Nmale V [end]

of training sentences would therefore, never completely con-
verge towards the underlying distribution as specified by the
grammar in Table 1.

Test sentences
The test sentences had male nouns in the subject positions, fe-
male nouns in the object positions (see Table 3) and contained
no animal nouns. They could not have been generated by the
more restricted grammar that generated the training sentences
and strong systematicity is required to process them correctly.
Note for example, that due to this reversal of the grammatical
roles for the male and female nouns, the first word of the test
sentences is always a male noun. This is in contrast with the
training sentences that always started with either animal or
female nouns.

The four types of test sentences are shown in Table 3 and
are labeled with the abbreviations SRC1, SRC2, ORC1 and
ORC2 that refer to two types of subject relative clauses (SRC)
and object relative clauses (ORC). All these types of sen-
tences contained three nouns that had to be either male or
female (chosen from three possible variants) and two verbs
(chosen from a set of ten). The total number of systematicity
test sentences equaled 10800.

Network architecture
We used the same architecture for the SRNs as described in
Elman (1990) but with different numbers of hidden units.
Words get presented at the input layer from which the
weighted activation is fed forward to the recurrent layer. The
recurrent layer’s activation is computed from a projection of
the input activation, a bias vector and a transformation of its
activation at the previous time-step. This last component al-
lows the network to learn sequential information. The final
activation of the recurrent layer is calculated with the logistic
sigmoid activation function which is defined as

arec,i = f (xi) =


+ e−xi
, (2)

where xi is the total activation arriving at unit i. The output
layer receives input from the recurrent layer and its own bias

1601



vector after which the softmax activation function is applied.
This function is defined as

aout,i = f out(xi) =
exi

∑ jex j
. (3)

The softmax function results in positive real values for the ac-
tivation vector of the output layer that sum to one. This makes
it possible to interpret them as probabilities. More precisely,
the activation vectors per layer are given by

arec(t) = f(Winain(t)+Wrecarec(t−)+brec)
aout(t) = fout(Woutarec(t)+bout), (4)

where ain(t) is a 26 dimensional vector that contains zeros in
all of its elements except for a 1 in the element that corre-
sponds to the input word at time t. Respectively, the vectors
arec(t) and aout(t) contain the activation values of the recur-
rent and output layers at time t, Win is the matrix containing
the input weights and Wrec and Wout are similarly the matri-
ces containing respectively the recurrent and output weights.
The vectors brec and bout contain the bias vectors that are used
for respectively the recurrent layer and the output layer.

Training

Backpropagation and stochastic gradient descent were used
to train the network by minimizing the cross-entropy error-
function instead of the well-known sum-squared-error that
was being minimized in Frank and Čerňanský (2008). Mini-
mizing the cross-entropy for a multi-class classification prob-
lem is equivalent to maximizing a log-likelihood function that
is based on the categorical distribution. Simard, Steinkraus,
and Platt (2003) found faster convergence and better general-
ization properties by classification networks that were trained
by minimizing cross-entropy instead of the sum-squared-
error.

A group of ten networks with 41 hidden units (only dif-
fering in the random2 values of their initial weight matrices)
was trained for 10 epochs on 25000 sentences with an aver-
age length of 5.9 words. The training sentences were pre-
sented word by word and the networks were trained to asso-
ciate each word with the next word in the sequence. A learn-
ing rate of 0.1 was used and decreased with 0.01 after each
training epoch.

Results and discussion

To obtain performance scores for the SRNs and the Markov
models, the cosines of the angles between the vectors with
the probability estimations of these models and the true prob-
ability distributions derived from the underlying probabilistic
context-free grammar were calculated. This distance measure
is close to 1 if the vectors are highly similar and close to 0 if
they are nearly perpendicular.

Table 4: Average performance scores on the training and test
sentences for the SRNs and the Markov models.

Data set SRN Markov
best worst averaged best

Train set .964 .950 .959 .944
Test set .927 .856 .906 .792

Comparing the models
As Table 4 shows, the average performance of the ten SRNs
on the test sentences was substantially higher than that of the
smoothed best Markov models. Even the worst performing
network outperformed the Markov models. The average per-
formance on the training data was also investigated but since
the training sentences were generated at random, these results
are not directly comparable.

As Fig. 1 shows, the performance patterns per sentence
type of the SRNs and the smoothed best Markov models are
quite different. Wilcoxon matched-pairs signed-rank tests
showed that these differences were highly significant (with
p < .5 · 10− for all tests) at each position of the test sen-
tences.

Especially when the Markov models scored low, the net-
works did quite well. The SRNs reached a near perfect perfor-
mance on the first word of every sentence, while the Markov
models had trouble with it. The first word was a male noun
and these never occurred in the first position of a sentence
during training. To predict the next word, the Markov mod-
els could only rely on bigrams (or unigrams) that look at the
frequencies of words following a male noun in the object po-
sition. In the training data, a male noun in the object position
preceded an end-of-sentence marker. Predicting the end-of-
sentence marker is clearly incorrect when the first word of the
sentence was presented. The networks seem unaffected by
this problem. Their predictions seem independent of the gen-
der of the first word but dependent on its grammatical role.

This performance pattern can also be seen in for example
the fifth word of the ORC2 sentences. The Markov models
do badly at predicting the verb that follows this male noun.
In the training data, verbs mainly followed female nouns as
those were always subjects. The SRNs however, reach a near
perfect performance on this word. Similar results were found
for the sixth word of the SRC1 sentences, as well as for sev-
eral other points in test sentences.

In contrast, the Markov models did a lot better than the
networks on the fourth word of the SRC1 sentences but this
simply indicates that no systematicity was required to do well
on this word. The combination of a verb followed by a female
noun never appeared in the training data. Consequently, the
best Markov model could only be a bigram or a unigram. Fe-
male nouns were always subjects in the training data. It is

2The weight matrices were initialised with random values that
were uniformly distributed between the interval [−1,1].
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Figure 1: Average performance on each test sentence type, for the SRNs (averaged over all ten networks) and the smoothed
best Markov model. Examples of the sentence types are given by the labels on the x-axis

therefore not surprising that the most common bigram pre-
dicts that a verb would be likely to follow even though the
actual subject of that verb is the male noun that appeared ear-
lier in the sentence. This means that in this case the high
performance of the best Markov model results from a lack of
systematicity rather than the opposite.

The Markov models performed slightly better at other
points but it can be seen that these differences were always
very small. Moreover, the performance of the Markov models
was relatively high in these cases, reflecting less necessity to
display strong systematicity when predicting the next word.

Analysis of the input weights
To get a better understanding of how the recurrent networks
might succeed in displaying systematic behavior, we per-
formed a hierarchical cluster analysis (HCA) on the weights
that connect the inputs to the recurrent layer. This gives more
insight in how the network formed representations of its in-
puts. We refer to these weight vectors as ‘word representa-
tions’ because the localist coding in the inputs causes only a
single weight vector at a time to influence the recurrent layer.
Note that this is a different notion of word representation than
Elman (1990) used.

We took the network with the best average performance
for this analysis as it might be most clear from this network
how the systematicity came about. Fig. 2 shows the hierar-
chical clustering of the words based on their distances in the
representational space of the input weight vectors. It turned
out that the first clustering separates the word that and the
rest of the words, followed by a distinction between the end-
of-sentence marker and the remaining words. After that, the

biggest difference is between the nouns and the further re-
maining words. Within the noun cluster, it seems that further
groupings are quite arbitrary and reflect hardly any relation
with the gender of the nouns. What is important here is that
even though the male and female nouns never appeared in the
same grammatical roles, the network was still able to place
them in the same general category of nouns together with the
animal words. Somehow the network learned to use the gram-
matical category of the words rather than the exact grammat-
ical roles in which they appeared.

Figure 2: Hierarchical cluster analysis of the input weights of
the SRN with the best average performance
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Conclusion
SRNs trained to do next word prediction were able to outper-
form a baseline, that was based on the best smoothed Markov
models, on processing sentences that required strong system-
aticity. Hierarchical cluster analysis showed that SRNs were
able to group the words they learned in a way that seemed
based on more abstract properties than just their exact gram-
matical positions.

We conclude that the SRNs displayed strong systematic-
ity and that this provides some evidence against the claim
of Fodor and Pylyshyn (1988). We showed that strong sys-
tematicity can be displayed by simple recurrent networks that
have been trained using a standard methodology. No addi-
tional modifications in architecture, training regime or way of
representing information were done and no information that
was not in the training data was used to train the networks.

According to Fodor and Pylyshyn (1988), combinatorial
syntax and semantics are the core properties of a symbol sys-
tem. Marcus (1998) states that a symbol system is a system
that performs operations over variables. A standard SRN is
not a combinatorial system and contains no distinction be-
tween instantiations of variables and operations over them.
We therefore argue that some notions of similarity are suffi-
cient for displaying strong systematicity, without the need for
any discrete symbols.

How SRNs generalize
An analysis of the input weights showed that the SRNs were
able to form a general category of nouns instead of separate
gender based categories. The ability to display systematicity
seems to arise from this representational level. Input words
that are represented near each other in the representational
space result in similar network states. If the female, male
and animal nouns are represented close together, they will be
treated similarly when predicting the next word.

This similarity plays an important role during training. If
animal nouns appear in the same roles as male nouns, they
will result in similar states in the network due to the context
information that is fed back into the recurrent layer. The net-
work can improve its performance directly by representing
them closer together as it follows from the training data that
they result in similar context states and require a similar treat-
ment. The same applies to the female nouns and the animal
nouns. If the male and female nouns both get represented
closer to the animal nouns, it follows (given that the vectors
live in a euclidean space) that the distance between the male
and female nouns also has to decrease during training.

A language learner who uses frequency information might
never be exposed to all positions in which a single noun can
occur. However, one could perhaps still learn to use the noun
in other positions by representing it closer to other nouns
based on overlap of contextual properties.

Of course the findings of this experiment are based on
one simulation and further research is required. Future stud-
ies could investigate the conditions that influence the perfor-

mance on tasks that require strong systematicity. It would be
particularly interesting to see how varying the number of an-
imal nouns might influence performance. If our explanation
of how connectionist systematicity arises is correct, increas-
ing the number of animal nouns should improve performance
on test sentences.
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