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Multiparameter exponentially-fitted methods applied to
second-order boundary value problems

M. Van Daele, D. Hollevoet and G. Vanden Berghe
Vakgroep Toegepaste Wiskunde en Informatica, Ghent WiiyeKrijgslaan 281-S9, B9000 Gent, Belgium

Abstract. Second-order boundary value problems are solved by means of &pe of exponentially-fitted methods that
are modifications of the Numerov method. These methods depend garofiparameters which can be tuned to solve the
problem at hand more accurately. Their values can be fixed over tine ieegration interval, but they can also be determined
locally from the local truncation error. A numerical example is given tofithte the ideas.
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INTRODUCTION

The Numerov method, given by

h2
Yi-t=2¥i+Yir = 35 (V1 10/ + Vi) @)
is a well-known fourth-order method for solving secondesrdoundary value problems of the form

y/: f(tay)7 y(a):av y(b) =B,

whereby, for simplicity, we assume thaand f are real. To do so, one first applies Eq. (1) at a number of esjaid
pointstj :==a+ jh, j=1,...,N whereh:= (b—a)/(N+ 1) and secondly a (possibly nonlinear) system has to be
solved. In recent papers [4, 5], we constructed so-callpdmeantially fitted (EF) versions of this method by imposing
six conditions related to the members of the fitting space

Fip(u) ={1t,t% ..t U {exp(xut), texp(£ut), ..., tPexp(xut)}
whereP € {—1,0, 1, 2} andK = 3— 2P, on the linear difference operatgf|h,a). This operator is defined as
Zh,aly(t) := y(t —h) +a0y(t) + y(t +h) — h? (bry” (t — ) + boy" (t) + bay"(t +h)) (2)

For P = —1, the classical Numerov method is obtained. Pef {0, 1, 2}, an EF method arises. An important issue
w.r.t. the application of such an EF method is the way in witigparametep is determined. In [4, 5] this parameter
was determined starting from the expression for the localdation error (Ite) of the resulting method. This Ite, as a
function ofZ := (u h)?, takes the form (fofZ| sufficiently small a closed expression can be written doee[2, 3, 5])

WP g(2) DXL (D2 — )Py () + 6 (h%),
where@(Z) = —2—}10+ 0(Z). At each point;, a valueuj2 for u? is then computed such that
pDK+1 (D2 _ HJZ)PHV(I']) 0.
For P =0, this always leads tpj2 € R. ForP = 1 however, it may happen that both romﬁof
yO(t) — 26y () + pty@ (1) =0

are complex. In that case, the numerical solution obtainigtdl tvis method will be complex. To solve this problem,
we propose a new type of EF methods.
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DERIVATION OF THE METHODS

We start from the fitting space

ﬁ,P(IJ@ Ha,..., IJP) = {17t7 t27 ce 7tK} U {eXp(iHOt)a eXp(ilJlt)v ) eXp(iIJPt)} ’

where the parametemnsy, = 0,..., P are either real or appear as complex conjugate pairs. Inr dgodebtain
expressions for the coefficierds, by andb; of the method, we impose for each memig) of this set the condition
(2). DenotingZq := (gh)?, & := &(Zq) andnq := n(Zg), whereé andn are defined (see [1], p. 64) as

sin(ivZ) .
§2)=codivz) and n@2)={ i,z it Z#0
1 ifZ=0,
we obtain the following expressions
(i) P=-1: 5 1
a8 =—2 bozé blsz-
(i) P=0:
—2&0+2+é0Zo 12Zp—-260+2
=— = = =202
=2 b=y T2 28— 1)
(i) P=1:

(-2 +8(1-40)4 | (2-1)Z0+(1-4)Z
21720(&1—&o) ! 2120(&1—&o) '

In the special case wherg — Zy we have

a=-2 bp=-2

im %:4502—450—2'7020 = NoZo+2—2¢&o
2175 Zo’No 21— ZyNo .

These are exactly the coefficients which are obtained fdittimegy spaces1 1(to) = {1, t, exp(£Lot), t exp(£Lot)}.
In fact, this just illustrates the general property

lim .k 1(Ho, 1) = Fk.1(Ho).-
Hi—Ho
(iv) P=2:

—&0(&1—82)Zo+ &2 (—&0+ 1) Z0) Z1+ &1 (S0 — &2) ZoZ2
(&2—&1)Z1Zo+ (&1 — &0) ZoZ1 + (&0 — &2) ZoZ2
—&1(80—&2)Z1—&2(—é0+ 1) Zo+ &0 (81— &2) 2o
(&2—&1)Z1Zo+ (&1—&0) ZoZa + (&0 — &2) Z0Z2
(—&o+¢&2)Z1+ (éo—E&1) 2o+ (E1—&2) 2o
(&2—&1)Z1Zo+ (81— &0) ZoZ1+ (&0 — &2) ZoZ2

Again we can consider some special cases. A first one is @otavhenz, — Z; :

a0 - 2!

bp = -2

by =

270&1% — 2818070+ &0Z1 (Zo— Z1) M

l = -2

zo0y, %0 22081 + 21 (Zo— 21) M1 — 28020
im by — 228 —28b+&(Zo-Z)m

-7 272081+ 21 (Zo—Z1) N1 — 28020

lim by — 281+ (Zo—2Z1) M —2&o
Z—7; 22081+ 7Z1(Zo—Z1)n1— 28020



These are the coefficients that are obtained for the fittiagefexp(+Lot), exp(tuit), t exp(+puit)}.
In the particular case where bath andZ; tend toZy, we obtain

2
im a — 250 2—3noéo

a-% o+3no

- No&o+&°—2
lim = -
27 bo Zo(&0+3no)
-2

. éo—No

Iim by = ————.

4% ! Zo (& +3n0)

These are exactly the formulae that are obtained for theficieeits when the fitting space”_12(Ho) =
{exp(&uot), t exp(£Lot), t? exp(#Lot) } is considered. In fact, this illustrates the general priyper

Jlim i 2(Ho, i, H2) = Fk 2(Ho) -
2 b0
The expressions for the coefficients given above can onlyskd when all of the&y are mutually well separated
and not too close to zero. In such cases, Taylor series aippatigns need to be used.

SELECTING VALUES FOR THE PARAMETERS

To select appropriate values for the parameters, one camannihilate the leading term of the Ite, which is now given
by
h° @ (2o, ..., Zp) D (D — kf) (D® — 1) - (D? — ) y(t)) + O (h®),

for some functiorrﬁ: with (ﬁ:(zo, s Zp) = —2—}10—&- 0(20,21, ...,2Zp). In particular, this means that we will have to
annihilate the following expressions :

(i) P=0:Eoj:=yO(t;) - sy (t))

(i) P=1:Eyj:=yO(t;) = (U§+u{) YW () + K Y (1))
(i) P=2:Epj:=yO(t)) = (U§ + HE+ 12) Y (1)) + (G HE + 1§ 15 + uF 13) Y () — H HE EY(Y;)-
ForP =0, Eg j = 0 gives a unique way to fix the value pg at the point;. ForP = 1 however, we need to fix two
parameters? andu?, so two equations are needed. One of the many possibilitigistioe to takeE; j = 0= Ey j 1.
In a similar way, for the case = 2, the three parametegg, 2 and 2 can be determined frofl, j_1 = 0,Ezj =0
andEz’Hl =0.

It should be noted that instead of using variable parameatessmay also use parameters that are constant over the
entire integration interval. For instance, k= 0 one could use some averaged va;laéehat is obtained from solving
(some of) the equatiorsgj =0, j = 1,...,N. In the case® = 1 one may determine fixed values considering only
the boundaries, i.e. solvirtgy o = 0 = E; n+1, While for P = 2 this could be obtained frof; o = 0= B2 ((N+1)/2) =
Ean1.

Of course, the expressiofisj contain higher order derivatives. These can be expressesrits ofy andy’ by
means of the differential equation agdcan be reexpressed in termsyaby means of (fourth-order accurate) finite
difference schemes. In this way, the expressigscan be transformed into equations only involving some unkno
function valuesy,. To cope with this problem, one could first solve the probleiththe classical Numerov method.

A NUMERICAL EXAMPLE

To illustrate the methods, we will focus on the particulaseaherd® = 1. As an example, we consider the problem

y'=Sy-ésint/2) y0)=1, ym=0,



whose solution is given by(t) = € cogt/2). Remark thay(t) belongs to the fitting spacéql(l+ i/2,1—i/2), but
there is no value fop such that it also belongs t& 1 ().
For this problem, the It&, j, after reexpressing the derivatives, becomes

_ 11 3 ) 9 3
Eryim ¢ [(— 1o+ 3 (kD) — g ) sint/2)+ (1G-+4E— 5 ) cost/2) + & (41 —3) (44E -3y,

(3)
Substitutingy(tj) = € cogt;j/2), go = 1—i/2 andy; = 1+i/2, one can verify that indeefl; ; = 0. Conversely,
to determine suitable values foy and p; in this case, one might try to annihilate the expressiongHterlte at
the endpoints. Indeed, solvir o = 0 = Eyny1 leads to{p3, u2} = {3/4—i,3/4+i} = {(1-i/2)2,(1+i/2)?}.
Applying the corresponding EF method, we obtain resultsahaaccurate up to machine accuracy.

Finally, we first apply the classical Numerov method, anghttve numerically determine the parametpgsanduf
from locally solvingEy j = 0= Eg j4+1 in whichy(tj) andy(tj;+1) are replaced by the previously obtained values. In
that case we obtain a numerical solution that is much moreratzthan the previously computed classical solution.

All of this is shown in Figure 1, where we show results that a@lpéained withh = 2", m= 3,4,5,6,7. The
numerical results obtained confirm that the classical Nomaemnethod is a fourth-order method, while the EF-fitted
version with numerically computegal-values behaves like a method of order eight (until machicei@cy is reached).
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FIGURE 1. Left: maxc1 . ny|Y(tj) —yj| for the classical method (circles), the EF method with exact valuepa‘cﬁsquares)

and the EF method with numerically computed valuesl,fél(diamonds). For the latter case, the max-norm of the errqugilis
depicted in the right part of the figure.

CONCLUSION

Second-order boundary value problems are solved by meaasefv family of exponentially-fitted variants of the
well-known Numerov method. These new methods confainl parametergl, L, ..., Up that can be determined
either by local arguments of by global arguments and thig. dleads to variable or constant parameter values. In the
special case whergy = 3 = ... = up = U, a known family of EF methods is obtained. However, in thatecthe
solution is only guaranteed to be real if the parameter valigereal or purely imaginary. Finally, it is shown how the
new EF methods can be used in practice in order to obtaintsebalt are much more accurate than those obtained by
the classical Numerov method.
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