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Abstract. Second-order boundary value problems are solved by means of a new type of exponentially-fitted methods that
are modifications of the Numerov method. These methods depend upon aset of parameters which can be tuned to solve the
problem at hand more accurately. Their values can be fixed over the entire integration interval, but they can also be determined
locally from the local truncation error. A numerical example is given to illustrate the ideas.
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INTRODUCTION

The Numerov method, given by

y j−1−2y j +y j+1 =
h2

12

(
y′′j−1 +10y′′j +y′′j+1

)
, (1)

is a well-known fourth-order method for solving second-order boundary value problems of the form

y′′ = f (t,y) , y(a) = α, y(b) = β ,

whereby, for simplicity, we assume thaty and f are real. To do so, one first applies Eq. (1) at a number of equidistant
points t j := a+ j h, j = 1, . . . ,N whereh := (b− a)/(N + 1) and secondly a (possibly nonlinear) system has to be
solved. In recent papers [4, 5], we constructed so-called exponentially fitted (EF) versions of this method by imposing
six conditions related to the members of the fitting space

SK,P(µ) = {1, t, t2, . . . , tK}∪{exp(±µ t), t exp(±µ t), . . . , tPexp(±µ t)}

whereP∈ {−1, 0, 1, 2} andK = 3−2P, on the linear difference operatorL [h,a]. This operator is defined as

L [h,a]y(t) := y(t −h)+a0y(t)+y(t +h)−h2(
b1y′′(t −h)+b0y′′(t)+b1y′′(t +h)

)
. (2)

For P = −1, the classical Numerov method is obtained. ForP∈ {0, 1, 2}, an EF method arises. An important issue
w.r.t. the application of such an EF method is the way in whichits parameterµ is determined. In [4, 5] this parameter
was determined starting from the expression for the local truncation error (lte) of the resulting method. This lte, as a
function ofZ := (µ h)2, takes the form (for|Z| sufficiently small a closed expression can be written down, see [2, 3, 5])

h6 φP(Z)DK+1 (D2−µ2)P+1y(t j)+O(h8) ,

whereφP(Z) = − 1
240+O(Z). At each pointt j , a valueµ2

j for µ2 is then computed such that

DK+1 (D2−µ2
j )

P+1y(t j) = 0.

For P = 0, this always leads toµ2
j ∈ R. ForP = 1 however, it may happen that both rootsµ2

j of

y(6)(t j)−2µ2y(4)(t j)+ µ4y(2)(t j) = 0

are complex. In that case, the numerical solution obtained with this method will be complex. To solve this problem,
we propose a new type of EF methods.
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DERIVATION OF THE METHODS

We start from the fitting space

ŜK,P(µ0,µ1, . . . , µP) = {1, t, t2, . . . , tK}∪{exp(±µ0 t), exp(±µ1 t), . . . , exp(±µP t)} ,

where the parametersµq, q = 0, . . . , P are either real or appear as complex conjugate pairs. In order to obtain
expressions for the coefficientsa0, b0 andb1 of the method, we impose for each membery(t) of this set the condition
(2). DenotingZq := (µqh)2, ξq := ξ (Zq) andηq := η(Zq), whereξ andη are defined (see [1], p. 64) as

ξ (Z) = cos(i
√

Z) and η(Z) =






sin(i
√

Z)

i
√

Z
if Z 6= 0

1 if Z = 0,

we obtain the following expressions

(i) P = −1 :

a0 = −2 b0 =
5
6

b1 =
1
12

.

(ii) P = 0 :

a0 = −2 b0 =
−2ξ0 +2+ξ0Z0

Z0 (ξ0−1)
b1 = −1

2
Z0−2ξ0 +2
Z0 (ξ0−1)

.

(iii) P = 1 :

a0 = −2 b0 = −2
ξ0 (ξ1−1)Z0 +ξ1 (1−ξ0)Z1

Z1Z0 (ξ1−ξ0)
b1 =

(ξ1−1)Z0 +(1−ξ0)Z1

Z1Z0 (ξ1−ξ0)
.

In the special case whereZ1 → Z0 we have

lim
Z1→Z0

b0 =
4ξ0

2−4ξ0−2η0Z0

Z0
2η0

lim
Z1→Z0

b1 =
η0Z0 +2−2ξ0

Z0
2η0

.

These are exactly the coefficients which are obtained for thefitting spaceS1,1(µ0)= {1, t, exp(±µ0 t), t exp(±µ0 t)}.
In fact, this just illustrates the general property

lim
µ1→µ0

ŜK,1(µ0,µ1) = SK,1(µ0) .

(iv) P = 2 :

a0 = −2
(−ξ0 (ξ1−ξ2)Z2 +ξ2 (−ξ0 +ξ1)Z0)Z1 +ξ1 (ξ0−ξ2)Z0Z2

(ξ2−ξ1)Z1Z2 +(ξ1−ξ0)Z0Z1 +(ξ0−ξ2)Z0Z2

b0 = −2
−ξ1 (ξ0−ξ2)Z1−ξ2 (−ξ0 +ξ1)Z2 +ξ0 (ξ1−ξ2)Z0

(ξ2−ξ1)Z1Z2 +(ξ1−ξ0)Z0Z1 +(ξ0−ξ2)Z0Z2

b1 =
(−ξ0 +ξ2)Z1 +(ξ0−ξ1)Z2 +(ξ1−ξ2)Z0

(ξ2−ξ1)Z1Z2 +(ξ1−ξ0)Z0Z1 +(ξ0−ξ2)Z0Z2
.

Again we can consider some special cases. A first one is obtained whenZ2 → Z1 :

lim
Z2→Z1

a0 = −2
2Z0ξ1

2−2ξ1ξ0Z0 +ξ0Z1 (Z0−Z1)η1

2Z0ξ1 +Z1 (Z0−Z1)η1−2ξ0Z0

lim
Z2→Z1

b0 = −2
2ξ1

2−2ξ1ξ0 +ξ0 (Z0−Z1)η1

2Z0ξ1 +Z1 (Z0−Z1)η1−2ξ0Z0

lim
Z2→Z1

b1 =
2ξ1 +(Z0−Z1)η1−2ξ0

2Z0ξ1 +Z1 (Z0−Z1)η1−2ξ0Z0
.



These are the coefficients that are obtained for the fitting space{exp(±µ0 t), exp(±µ1 t), t exp(±µ1 t)}.
In the particular case where bothZ2 andZ1 tend toZ0, we obtain

lim
Z1 → Z0
Z2 → Z0

a0 = 2
ξ0

2−2−3η0ξ0

ξ0 +3η0

lim
Z1 → Z0
Z2 → Z0

b0 = 2
η0ξ0 +ξ0

2−2
Z0 (ξ0 +3η0)

lim
Z1 → Z0
Z2 → Z0

b1 =
ξ0−η0

Z0 (ξ0 +3η0)
.

These are exactly the formulae that are obtained for the coefficients when the fitting spaceS−1,2(µ0) =
{exp(±µ0 t), t exp(±µ0 t), t2 exp(±µ0 t)} is considered. In fact, this illustrates the general property

lim
µ1 → µ0
µ2 → µ0

ŜK,2(µ0,µ1,µ2) = SK,2(µ0) .

The expressions for the coefficients given above can only be used when all of theZq are mutually well separated
and not too close to zero. In such cases, Taylor series approximations need to be used.

SELECTING VALUES FOR THE PARAMETERS

To select appropriate values for the parameters, one can tryto annihilate the leading term of the lte, which is now given
by

h6 φ̂P(Z0, . . . , ZP)DK+1 (D2−µ2
0)(D2−µ2

1) · · · (D2−µ2
P)y(t j)+O(h8) ,

for some function̂φP with φ̂P(Z0, . . . , ZP) = − 1
240 +O(Z0, Z1, . . . ,ZP). In particular, this means that we will have to

annihilate the following expressions :

(i) P = 0 : E0, j := y(6)(t j)−µ2
0 y(4)(t j)

(ii) P = 1 : E1, j := y(6)(t j)− (µ2
0 + µ2

1)y(4)(t j)+ µ2
0 µ2

1 y(2)(t j)

(iii) P = 2 : E2, j := y(6)(t j)− (µ2
0 + µ2

1 + µ2
2)y(4)(t j)+(µ2

0 µ2
1 + µ2

0 µ2
2 + µ2

1 µ2
2)y(2)(t j)−µ2

0 µ2
1 µ2

2 y(t j).

For P = 0, E0, j = 0 gives a unique way to fix the value ofµ2
0 at the pointt j . For P = 1 however, we need to fix two

parametersµ2
0 andµ2

1 , so two equations are needed. One of the many possibilities might be to takeE1, j = 0 = E1, j+1.
In a similar way, for the caseP = 2, the three parametersµ2

0 , µ2
1 andµ2

2 can be determined fromE2, j−1 = 0, E2, j = 0
andE2, j+1 = 0.

It should be noted that instead of using variable parameters, one may also use parameters that are constant over the
entire integration interval. For instance, forP = 0 one could use some averaged valueµ2

0 that is obtained from solving
(some of) the equationsE0, j = 0, j = 1, . . . ,N. In the caseP = 1 one may determine fixed values considering only
the boundaries, i.e. solvingE1,0 = 0 = E1,N+1, while for P = 2 this could be obtained fromE2,0 = 0 = E2,⌊(N+1)/2⌋ =
E2,N+1.

Of course, the expressionsEP, j contain higher order derivatives. These can be expressed interms ofy andy′ by
means of the differential equation andy′ can be reexpressed in terms ofy by means of (fourth-order accurate) finite
difference schemes. In this way, the expressionsEP, j can be transformed into equations only involving some unknown
function valuesyp. To cope with this problem, one could first solve the problem with the classical Numerov method.

A NUMERICAL EXAMPLE

To illustrate the methods, we will focus on the particular case whereP = 1. As an example, we consider the problem

y′′ =
3
4

y−et sin(t/2) y(0) = 1, y(π) = 0,



whose solution is given byy(t) = et cos(t/2). Remark thaty(t) belongs to the fitting spacêS1,1(1+ i/2,1− i/2), but
there is no value forµ such that it also belongs toS1,1(µ).

For this problem, the lteE1, j , after reexpressing the derivatives, becomes

E1, j := et j

[(
−11

16
+

3
2

(µ2
0 + µ2

1)−µ2
0 µ2

1

)
sin(t j/2)+

(
µ2

0 + µ2
1 −

9
4

)
cos(t j/2)

]
+

3
64

(4µ2
0 −3)(4µ2

1 −3)y(t j) .

(3)
Substitutingy(t j) = et j cos(t j/2), µ0 = 1− i/2 andµ1 = 1+ i/2, one can verify that indeedE1, j ≡ 0. Conversely,
to determine suitable values forµ0 and µ1 in this case, one might try to annihilate the expressions forthe lte at
the endpoints. Indeed, solvingE1,0 = 0 = E1,N+1 leads to{µ2

0 ,µ2
1} = {3/4− i,3/4+ i} = {(1− i/2)2,(1+ i/2)2}.

Applying the corresponding EF method, we obtain results that are accurate up to machine accuracy.
Finally, we first apply the classical Numerov method, and then we numerically determine the parametersµ2

0 andµ2
1

from locally solvingE1, j = 0 = E1, j+1 in which y(t j) andy(t j+1) are replaced by the previously obtained values. In
that case we obtain a numerical solution that is much more accurate than the previously computed classical solution.

All of this is shown in Figure 1, where we show results that areobtained withh = 2−mπ, m = 3,4,5,6,7. The
numerical results obtained confirm that the classical Numerov method is a fourth-order method, while the EF-fitted
version with numerically computedµ-values behaves like a method of order eight (until machine accuracy is reached).
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FIGURE 1. Left : maxj∈{1,...,N} |y(t j )−y j | for the classical method (circles), the EF method with exact values forµ2
q (squares)

and the EF method with numerically computed values forµ2
q (diamonds). For the latter case, the max-norm of the error inµ2

q is
depicted in the right part of the figure.

CONCLUSION

Second-order boundary value problems are solved by means ofa new family of exponentially-fitted variants of the
well-known Numerov method. These new methods containP+ 1 parametersµ0, µ1, . . . , µP that can be determined
either by local arguments of by global arguments and this resp. leads to variable or constant parameter values. In the
special case whereµ0 = µ1 = . . . = µP = µ , a known family of EF methods is obtained. However, in that case the
solution is only guaranteed to be real if the parameter valueµ is real or purely imaginary. Finally, it is shown how the
new EF methods can be used in practice in order to obtain results that are much more accurate than those obtained by
the classical Numerov method.
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