

Synchronization in a Population of Oscillators

JONATHAN ROGGE AND DIRK AEYELS

SYSTEMS Research Group, EESA (Department of Electrical Energy, Systems and Automation), Ghent University

Description of the System

1. A cell \equiv a dynamical system with one attracting limit cycle.

3 Applying Kuramoto's Model to a Finite Number of Cells

Introduce the order parameter:

- 2. Each cell is therefore a self-sustaining periodic process with its own natural frequency.
- 3. A large number of cells are coupled to form a network.
- 4. The cell dynamics can be represented by a dynamics on the circle.

Synchronization

- Total Phase Locking = the phases of all cells move around the circle with mutually constant phase differences.
- Synchronization = the phases of all cells move around the circle with zero phase differences.
- Partial Synchronization = the population splits into two groups: one totally phase locking group and one desynchronized group.

2 Kuramoto's Model: An Infinite Number of Cells

The system equations considered in this model are [2]:

$$(t)e^{i\psi(t)} = \frac{1}{N}\sum_{j=1}^{N}e^{i\theta_j(t)}.$$

- If the population exhibits Total Phase Locking, then r(t) is constant in time. Call this constant value r_{∞} .
- It can be shown that r_{∞} has to satisfy

$$r_{\infty}(K) = \frac{1}{N} \sum_{j=1}^{N} \pm \sqrt{1 - \left(\frac{\omega_j - \omega_m}{Kr_{\infty}(K)}\right)^2},$$

with $\omega_m =: \frac{1}{N} \sum_{j=1}^N \omega_j$ the mean natural frequency.

• The value of r_{∞} is independent of the state variables θ_i . Then the dynamics (1) can be rewritten as a system of N decoupled equations:

 $\dot{\theta}_i = \omega_i - Kr_\infty \sin(\theta_i), \quad i \in \{1, \cdots, N\}.$ (2)

- If $Kr_{\infty} > \omega_i, i \in \{1, \dots, N\}$ each of the above equations has a stable and an unstable equilibrium, indicated respectively by θ_i^s and θ_i^u .
- Equilibria of system (2) are also equilibria of system (1) and vice versa.
- It can be proven that the state with $\theta_i = \theta_i^u$ for some $i \in \{1, \dots, N\}$ and $\theta_j = \theta_j^s$ for the other oscillators, is unstable when regarded as an equilibrium state of system (1).
- The only equilibrium state that is possibly stable is the state with

 $\dot{\theta}_i = \omega_i + K \sum \sin(\theta_j - \theta_i), \quad i \in \{1, \cdots, N\},$ (1)

with

- K: the strength of the mutual interaction,
- θ_i : the phase of the *i*-th cell,
- ω_i : the natural frequency of the *i*-th cell.
- 1. Consider a population of infinitely many cells of which the natural frequencies are drawn from some prescribed distribution (e.g. Gaussian).
- 2. Kuramoto investigated the properties of the sum of the phases of all cells:

$$r(t)e^{i\psi(t)} \triangleq \int_0^{2\pi} e^{i\theta}\rho(\theta,t)\mathrm{d}\theta$$

with $\rho(\theta, t)$ the number density at phase θ at time t.

- 3. Simulations [1] show that after a transient r(t) has a constant steady state for every value of K. Call this steady state value r_{∞} .
- 4. r_{∞} depends on the value of K in the following way:

 K_C

$\theta_i = \theta_i^s, \quad \forall i \in \{1, \cdots, N\}.$

Example:

Consider the following population:

• There are 2 total phase locking solutions with $\theta_i = \theta_i^s$, $\forall i \in \{1, \dots, N\}$:

$$r_{\infty} = \sqrt{\frac{1}{2} \pm \sqrt{\frac{1}{4} - \left(\frac{\omega_x}{K}\right)^2}},$$

with $\omega_x = (\omega_2 - \omega_1)/2$. The smallest value of K for which these solutions exist is $K \geq |\omega_2 - \omega_1|.$

• The upper branch turns out to be stable, the lower branch is unstable.

Observations

- If $K < K_C$ the only possible steady state solution is $r_{\infty} = 0$. The cells act as if they were uncoupled. It can be proven that this solution is stable for $K < K_C$.
- If $K > K_C$ there are two steady state solutions: the incoherent motion $r_{\infty} = 0$ which is unstable for $K > K_C$ and the partially synchronizing branch. The stability of the latter has not yet been proven.
- Only if the coupling strength is infinitely large, the whole population synchronizes: $\lim_{K \to \infty} r_{\infty}(K) = 1.$

References

- [1] Y. Kuramoto. Cooperative dynamics of oscillator community. *Prog. Theoret. Phys.* Suppl., 79:223–240, 1984.
- [2] S.H. Strogatz. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. *Physica D*, 143:1–20, 2000.