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Abstract: This paper presents an on-line diagnosis algorithm for Petri nets where a priori
probabilistic knowledge about the plant operation is available. We follow the method developed
by Benveniste, Fabre, and Haar to assign probabilities to configurations in a net unfolding
thus avoiding the need for randomizing all concurrent interleavings of transitions. We consider
different settings of the diagnosis problem, including estimating the likelihood that a fault may
have happened prior to the most recent observed event, the likelihood that a fault will have
happened prior to the next observed event. A novel problem formulation treated in this paper
considers deterministic diagnosis of faults that occurred prior to the most recent observed event,
and simultaneous calculation of the likelihood that a fault will occur prior to the next observed
event.

1. INTRODUCTION

In this paper we derive an on-line diagnosis algorithm for
Petri nets (PNs) where a priori probabilistic knowledge
about the plant operation is available. We consider the
plant model described by a free-choice PN. The plant
observation is given by a subset of events - transitions
whose occurrence is reported without delay. Other tran-
sitions are silent and unobservable. Some unobservable
transitions represent faults. The model-based diagnosis for
PNs requires to detect the occurrence of a fault transition
based on the model and the on-line observation generated
by the plant. First the set of traces that are legal from the
initial marking and that are compatible with the received
observation is derived and then the diagnosis result of the
plant is obtained by checking whether some or all of the
legal traces include fault transitions. Having probabilistic
information about the execution of the transitions in the
model we extend the diagnosis algorithm to distinguish
between faults whose occurrence is likely or unlikely.

A variety of diagnosis approaches analyzing the plant
model under partial observations have been proposed
based on the type and level of details chosen for the
system models and on the kind of faults to be diagnosed.
The notion of diagnosability has been defined e.g. in M.
Sampath et al. [1995]. Deterministic and stochastic finite-
automata models are used in Thorsley and Theneketzis
[2005], Wang et al. [2004], deterministic Petri nets e.g. in
Benveniste et al. [2003], Haar [2003], Boel and Jiroveanu
[2004], Giua and Seatzu [2005], Jiroveanu [2006], Genc
and Lafortune [2007], Jiroveanu et al. [2008], partially

� This paper presents research results of the Belgian Network
DYSCO, funded by the IAP Programme, initiated by the Belgian
State, Science Policy Office. The work of the first author was
supported by the VEGA grants 1/0649/09, VG 1/0822/08 of the
Slovak Grant Agency. The scientific responsibility rests with the
authors

stochastic Petri nets in Aghasaryan et al. [1998], and timed
Petri nets in Jiroveanu et al. [2006].

Adding probabilities to this deterministic setting has two
main advantages. First it allows incorporating some statis-
tical knowledge on the loss or masking of alarms or on the
occurrence of faults based on past experience in monitoring
the plant. Secondly, it incorporates some smoothness in
the fault net, and allows accounting for incomplete knowl-
edge on the consequences of faults, or on the alarms they
generate.

We follow the probabilistic method developed by Ben-
veniste and coauthors (Benveniste et al. [2003], Aghasaryan
et al. [1998], Benveniste et al. [2004], Abbes and Benveniste
[2008]) to assign probabilities to configurations in a net
unfolding thus avoiding the need for randomizing all con-
current interleavings of transitions. We consider different
settings of the diagnosis problem, including estimating the
likelihood that a fault may have happened prior to the
most recent observed event, the likelihood that a fault will
have happened prior to the next observed event; we also
consider the following novel problem formulation of deter-
ministically diagnosing faults that occurred prior to the
most recent observed event, and simultaneously obtaining
the likelihood that a fault will happen between the time of
the most recent observed event and of the next observed
event. This approach combines the deterministic diagnosis
of faults that may have occurred in the past of Jiroveanu
et al. [2008] with a probabilistic unfolding of future traces.

The paper is organized as follows. Section 2 introduces
some basic notions of PNs. Section 3 defines the prob-
abilistic Petri net under study, the diagnosis problems
to be solved, and we show implementable algorithms for
achieving this diagnosis. In section 4 we briefly discuss
including of unreliable observations in our model, and we
conclude in Section 5.
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2. DEFINITIONS

We use the standard notation of Petri nets N = (P, T , F )
where P denotes the set of places, T denotes the set of
transitions, F = Pre ∪ Post is the incidence function,
Pre(p, t) : P×T → {0, 1} , and Post(t, p) : T ×P → {0, 1}
specify the arcs. M0 denotes the initial marking. Denote
by LN (M0) the set of all legal traces of a PN 〈N , M0〉,
by T ∗ the Kleene closure of the set T , by ε the empty
string, by •p, p• the set of input, output transitions of
a place; •t and t• for the set of input, output places of
a transition, and by �, � and ‖ the dependence, conflict,
and concurrency relation of PN nodes. A trace τ of events
belongs to the language LN (M0) if τ = M0

t1−→ M1
t2−→

. . .
tk−→ Mk, i = 1 . . . k, Mi−1 ≥ Pre(ti). The projection

ΠT ′ : LN (M0) → T ′∗ is defined as: i) ΠT ′(ε) = ε; ii)
ΠT ′(t) = t if t ∈ T ′; iii) ΠT ′(t) = ε if t ∈ T \ T ′; iv)
ΠT ′(σt) = ΠT ′(σ)ΠT ′(t) for σ ∈ LN (M0) and t ∈ T .

A free choice Petri net is an ordinary Petri net such that
every arc from a place is a unique incoming or a unique
outgoing arc to a transition.
Definition 1. An occurrence net (Nielsen et al. [1981],
Benveniste et al. [2003], J. Esparza et al. [1996]) is a net

O = (B, E,�1) such that:

i) ∀a ∈ B ∪E : ¬(a � a) (acyclic)
ii) ∀a ∈ B ∪E : | {b : a � b} |<∞ (well-formed)
iii) ∀b ∈ B : | •b |≤ 1 (no backward conflict)

B is referred to as the set of conditions, E the set of events,
�1 the immediate dependence relation, and •b the set of
input events of b.
Definition 2. A configuration C = (BC , EC ,�) in the
occurrence net O is a proper sub-set of O that is conflict
free, i.e. ∀a, b ∈ (BC ∪ EC) × (BC ∪ EC) ⇒ ¬(a�b) such
that C is causally upward-closed, i.e. ∀b ∈ BC ∪ EC :
a ∈ B ∪ E and a �1 b ⇒ a ∈ BC ∪ EC and such that
min�(C) = min�(O)
Definition 3. Consider a PN 〈N , M0〉 s.t. ∀p ∈ P :
M0(p) ∈ {0, 1}. A branching process B of a PN 〈N , M0〉
is a pair B = (O , φ) where O is an occurrence net and φ
is a homomorphism φ : O → N s.t.:

(1) the restriction of φ to min�(O) is a bijection between
min�(O) and M0 (the set of initially marked places)

(2) φ(B) ⊆ P and φ(E) ⊆ T
(3) ∀a, b ∈ E : ( •a = •b) ∧ (a• = b•) ⇒ a = b

For a configuration C in O denote by CUT (C) the
maximal (w.r.t. set inclusion) set of conditions in C that
have no successors in C:

CUT (C) = {e• | e ∈ EC} ∪ min�(O)
\ { •e | e ∈ EC}

There exists a unique maximum branching process that is
the unfolding of 〈N , M0〉 and is denoted UN (M0).
Definition 4. (stopping prefix). A branching process B =
(B, E,�, φ) is called a stopping prefix if it satisfies the
following condition: ∀b ∈ B s.t. φ(b) ∈ P, either b•B = ∅ or
b•B = b•, where b•B denotes the post set of condition b.

Given the set C of all configurations in UN (M0). The set of
string linearizations 〈EC〉� = {σ = e1e2 . . . eυ | ∀eι, eλ ∈
EC : eι = eλ then ι = λ and for ι �= λ, eι � eλ then ι < λ}.

3. PROBABILISTIC DIAGNOSIS BASED ON
BACKWARD UNFOLDING

We consider dynamics of the PN that allows to model
causal dependencies, concurrency and interleaving. Faults
are considered to be a subset of the set of unobservable
events. The following plant description is considered in
Jiroveanu et al. [2008]:

(1) the PN model 〈N , M0〉 is free-choice with the set of
choice places Pc = {p ∈ P : p• > 1}

(2) T = To ∪ Tuo where To is the set of observable events
and Tuo is the set of unobservable (silent) events; the
PN does not contain any unobservable cycle

(3) lo is the observation labeling function lo : T → Ωo ∪
{ε} where Ωo is a set of labels and ε is the empty
label. lo(t) = ε if t ∈ Tuo and lo(t) ∈ Ωo if t ∈ To

(4) when an observable transition to ∈ To is executed in
the plant the label lo(to) is emitted without delay; the
execution of an unobservable event is silent

(5) the faults are unpredictable
(6) ∀p ∈ Pc, ∀p• ⊆ To or ∀p• ⊆ Tuo.

A minimal explanation of a given observed event to ∈ To

minimal explanation is a linearization of a set of events,
since there must exist a trace of firable events that executes
these events and whose occurrence enables to to fire prior
to any other observable event. But we are not interested
(in fact we wants to avoid) in enumerating all possible
interleaving of these events. One recursively searches back-
ward explaining all observations computing the explana-
tions and minimal markings that allow the execution of
the observed sequences. The set of minimal explanations
can be obtained running a backward unfolding algorithm
(Jiroveanu et al. [2008]). The diagnosis of the occurrence
of the fault in the past can be derived based on the set of
minimal explanations, while the diagnosis of the faults in
the past or in the future uses the set of all explanations of
the received observation including unobservable reachable
transitions after the observed event. In our approach we
distinguish two cases:

(1) A stochastic analysis of faults that either occurred
in the past or that may occur in the future prior
to the next observed event occurrence so that the
explanation only includes unobservable future events
not belonging to the minimal explanations. (Flochova
et al. [2007]);

(2) A deterministic analysis of faults that must have
occurred in the past (Jiroveanu et al. [2008]) and a
probabilistic analysis of faults that may occur in the
future prior to the next observed event occurrence.

Let π : T → (0, 1] assign the probability for each set of
choice transitions, where π satisfies:∑

t∈p•
π(t) = 1 (1)

The probability π can be extended to strings of transitions
π : T ∗ → (0, 1]:

π(τ) = Prodt∈Στ π(t) (2)
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In the global model the collection of probabilities of strings
must be normalized. The diagnosis is usually performed
in the following steps. First, the set of all possible traces
that match the system description and observations are
derived, and then it is checked whether these traces contain
faulty transitions. We consider a diagnoser that knows
the plant model. Using knowledge about the plant model
the diagnoser constructs, as in Jiroveanu et al. [2008],
the set of allowable sequences of events - further on
called explanations - that contain the first observed event
as only observable event, and then generates the set of
possible states the plant can be in after observing the
first observation. Recursively for each new observed event,
the diagnoser derives the set of explanations of the last
observed event by considering as initial state any one of the
estimated states derived at the last step (after the previous
observation). The diagnoser checks after each observation
whether these explanations contain faulty transitions.

Given a PN N = (P, T , F ) with initial marking M0, let
to ∈ T o be the first observed event. Then minimal context
of to MinC(to)=〈MinM, MinE〉 where:

(1) MinM ∈ ℘(Mo) (MinM is the minimal marking)
(2) MinE ∈ LN (MinM)(MinE) is the minimal explana-

tion with MinE = σuot
o σuo ∈ T ∗

uo
(3) ∀M’⊂⊂⊂ MinM then MinE /∈ LN (M’)
(4) ∀σ′

uot
0 obtained from σuo by deleting a transition

t ∈ σuo ⇒ σ
′
uot

0 /∈ LN (MinM)

Denote by CB the set of maximal configurations of the
branching process B and by AllB the set of all branching
processes that are stopping prefixes. Denote by π : C →
(0, 1] the unnormalized probability function on the set
of configurations C in the net unfolding UN (M0) that is
defined as follows:

∀C ∈ C π(C) = Prode∈EC
(π(e)) (3)

Normalization will by carried out later on when the
probability of faults having occurred is defined.

Consider two branching processes B,B′ ∈ AllB; B ⊆ B′.
Given a configuration CB denote by Ext(CB,B′) the set
of the maximal configurations in B′ that are extensions of
CB:

Ext(CB,B′) = {C ′
B′ ∈ CB′ | CB ⊆ C ′

B′} (4)

π(CB) =
∑

C′
B′∈Ext(CB,B′)

π(C ′
B′) (5)

The observations available at the time of the nth ob-
served event is denoted as On = 〈obs1, . . . , obsn〉, where
obsk ∈ Ωo is the label of the kth observation. Since the
observations obsk are received without errors and without
delays, the set LN (On) of all possible plant evolutions that
agree with the model with the initial conditions, and such
that the observed sequence of event labels is given by :

LN (On) = {τ ∈ LN (M0) | ΠTo(τ) = On} (6)

The plant diagnoser DN (On) (Jiroveanu et al. [2008]) after
observingOn is based on the set of all explanations and the
diagnosis result DRN (On) is obtained by projecting the
set of all possible evolutions onto the set of fault events:

DN (On) =
{
σf | σf = ΠTf

(τ) ∧ τ ∈ LN (On)
}

(7)

DRN (On) =

⎧⎨
⎩

N if DN (On) = {ε}
F if ε �∈ DN (On)
UF otherwise

(8)

N, F, UF are the diagnoser state normal, fault, uncertain
(M. Sampath et al. [1995]).

The set of configurations C(On) ∈ UN (M0) contains all
sequences C of observations s.t. their string lineariza-
tion EC contains exactly n observable events satisfying:
lo(toi ) = obsi, i = 1, . . . , n and ∀ eo

i , e
o
j ∈ Eo

C , if i < j then
eo
i � eo

j or eo
i ‖ eo

j . The set of explanations of the received
observation LN (On) can be derived as follows:

LN (On) = {τ | σ ∈ 〈EC〉� ∧ C ∈ C(On)} (9)

The set of minimal configurations C(On), respectively the
set of minimal explanations of the received observation
LN (On) are defined as follows. C ∈ C(On) if ∀e ∈ EC if :

φ(e) ∈ Tuo then ∃eo ∈ ECs.t.e � eoand φ(eo) ∈ To (10)

LN (On) =
{
τ | σ ∈ 〈EC〉� ∧ C ∈ C(On)

}
(11)

The plant diagnosis DN (On) and the diagnosis result
DRN (On) are obtained by projecting the sets of minimal
explanations and the set of all explanations onto the set
of fault events of the type i Tfi :

DN (On) =
{

σfi | σfi = ΠTfi
(τ) ∧ τ ∈ LN (On)

}
(12)

DRN (On) =

⎧⎨
⎩

N if DN (On) = {ε}
F if ε �∈ DN (On)
UF otherwise

(13)

We partition the set of fault events into disjoint fault sets
belonging to different fault types

∑
f =

∑
f1

⋃
. . .

⋃∑
fm.

Denote by Cfaulti(On) respectively Cwithoutfaulti(On) the
set of minimal configurations that contains at least a fault
event of the type i Tfi respectively the set of minimal
configurations that does not contain faults of the type i
Tfi .

Cfaulti(On) =
{
C ∈ C(On) | ∃e ∈ EC s.t. φ(e) ∈ Tfi

}

Cwithoutfi(On) =
{
C ∈ C(On) | ∀e ∈ EC , φ(e) ∈ T \ Tfi

}

Than:

πi(DR(On) = Fi) =

∑
C∈Cfaulti (On) π(C)∑

C∈C(On) π(C)

πi(DR(On) = NFi) =

∑
C∈Cwithoutfi (On) π(C)∑

C∈C(On) π(C)

(14)

where πi(DR(On) = Fi) denotes the probability of a fault
of the type i have happened before the last observed event
while πi(DR(On) = NFi) denotes the probability that no
fault of the type i has happened before the last observed
event.

Similarly denote by Cfaulti(On) respectively Cwithoutfi(On)
the set of all configurations that contains at least a fault
event of the type faults: Denote by D(On) the probabilistic
diagnosis result based on all explanations.

DN (On) =
{

σfi | σfi = ΠTfi
(τ) ∧ τ ∈ LN (On)

}
(15)
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Cfaulti(On) = {C ∈ C(On) | ∃e ∈ EC s.t. φ(e) ∈ Tfi}
Cwithoutfi(On) = {C ∈ C(On) | ∀e ∈ EC , φ(e) ∈ T \ Tfi}

Using the same methodology we can also derive the like-
lihood of a fault based on all explanations and we receive
the same formulae as in (14) removing all underscores.

πi(DR(On) = Fi) =

∑
C∈Cfaulti (On) π(C)∑

C∈C(On) π(C)

πi(DR(On) = NFi) =

∑
C∈Cwithoutfi (On) π(C)∑

C∈C(On) π(C)

(16)

A novel approach to the diagnosis problem is proposed in
the next paragraphs. We suggest that an interesting and
computationally often feasible solution can be obtained
by combining the deterministic analysis of what must
have happened for sure prior to the last observed event
(Jiroveanu [2006], Jiroveanu et al. [2008]), with a proba-
bilistic analysis of what may happen prior to the next event
observation. Deterministic minimal contexts are derived
while the set of ”possible continuations of these minimal
contexts” are equipped with probabilities (Flochova et al.
[2007]).

The sets of explanations, equipped with their probabilities,
can be calculated as follows :

(1) Compute the set of minimal explanations of the most
recent observed event i.e. carry out a backward search
in the reverse net RN . Derive minimal explanations
of the last observed event t0 and minimal explanations
of a sequence of observed events.

(2) Compute the unnormalized probability of all minimal
explanations

∀C ∈ C π(C) = Prode∈C(π(e)) (17)
(3) Sort explanations in descending order starting from

the most probable ones. Shellsort can be used, branch
and bound like improvements can be useful in order
to avoid enumerating very unlikely explanations.

(4) Accept top x % (0-100 %) of explanations according
to the input requirements.

(5) Compute the set of maximal explanations of the most
recent observed event, if required.

(6) Compute the unobservable continuations, which fol-
low after the next observable transitions and par-
tition the continuations into the following sets: the
set of configurations, which contain at least a faulty
event; a set of configurations, which contain at least
a faulty event of the fault of the type i, and the set of
configurations, which don’t contain any faulty event.
A modification of classical AI depth search, which
evaluates at first the node that has the most nodes
between itself and the last observed transition, can be
used for computing the set of continuations equipped
with probabilities.

(7) Compute the unnormalized probabilities of the faults
(faults of the type i) of all continuations (of unobserv-
able reaches after the last observation).

(8) Compute the unnormalized probabilities of the faults
(faults of the type i) based on the sets of all explana-
tions.

(9) Normalize the probabilities and and evaluate (16),
(17) to derive the normalized probability of a fault
of type i occurring.

Fig. 1. Probabilistic free-choice Petri net

Consider as an example the free-choice Petri net PN in
fig. 1 where t6 and t1o are observable events and t1, t8
are faulty events. After having received as the first and so
far only observation t6 the above algorithm leads to the
following calculations. The unfolding of PN is shown in
figure 2.

The possible configurations are:

C1: E1=e12,e0,e3,e′6, C2: E2=e12,e0,e3,e′6,e
′
7

C3: E3=e12,e0,e3,e′6,e
′
13, C4: E4=e12,e0,e3,e′6,e

′
13,e9

C5: E5=e12,e0,e3,e′6,e
′
13,e9,e15

C6: E6=e12,e0,e3,e′6,e
′
13,e9,e14

C7: E7=e12,e0,e3,e′6,e
′
13,e9,e14,e′0,e

∗
3

C8: E8=e12,e0,e3,e′6,e
′
13,e9,e14,ee1

C9: E9=e12,e0,e3,e′6,e
′
13,e9,e14,ee1,e4

C10: E10=e0,e4,e6, C11: E11=e1,e′4,e
′′
6

C12: E12=e2,e′′4 ,e′′′6 . C13: E13=ee0,ee′′′4 ,ee′′′6

C14: E14=ee1,ee′′4 ,ee′′6 , C15: E15=ee2,ee′4,ee
′
6

C16: E16=e12,ee0,ee3,ee6

Configurations C2 - C9 are continuation of C1. The set
of minimal configurations consists of C1 and C10 - C16.
Probability of configuration C1 (τ = t12t0t3t6) equals
π(τ) = π(t12)π(t0)π(t3)π(t6) = 0.8*0.2*1*1 = 0.16. Prob-
ability of configuration C10 (τ = t0t4t6) equals π(τ) =
π(t0)π(t4)π(t6) = 0.2*1*1 = 0.2 etc.
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Fig. 2. Unfolding of Petri net in figure 1

Failure probabilities assigned to minimal explanations are
shown in table 1 (the probability of the failure configura-
tions containing t1 and t8 is 0.258 ), to all explanations in
table 2 (the probability of a failure is 0.233).

The analysis of the possible future unobservable events
is shown in table 3. The probability of a failure that
happened after the last observed event equals 0.11.

minimal explanations

t12 t0 t1 t2

C1 0.8 0.2 1 1 0.16 0.07

C10 1 0.2 1 1 0.20 0.09

C11 1 1 0.3 1 0.30 0.13

C12 1 1 1 0.5 0.50 0.22

C13 1 0.2 1 1 0.20 0.09

C14 1 1 0.3 1 0.30 0.13

C15 1 1 1 0.5 0.50 0.22

C16 0.8 0.2 1 1 0.16 0.07

2.32 1.00

Table 1. Failure probabilities assigned to min-
imal explanations

The results of the proposed algorithms have been com-
pared with the results of the stochastic diagnoser of Thors-
ley and Theneketzis [2005] after redrawing automata mod-
els into corresponding Petri net models. The same results

all explanations

t12 t0 t1 t2 t7 t8 t13 t14 t15

C1 0.8 0.2 0.16 0.06

C2 0.8 0.2 0.2 0.03 0.01

C3 0.8 0.2 0.8 0.05

C4 0.8 0.2 0.8 0.05

C5 0.8 0.2 0.8 0.3 0.04 0.01

C6 0.8 0.2 0.8 0.7 0.03

C7 0.8 0.0 0.8 0.7 0.02 0.01

C8 0.8 0.2 0.3 0.8 0.7 0.03 0.01

C9 0.8 0.2 0.3 0.8 0.7 0.03 0.01

C10 0.2 0.20 0.07

C11 0.3 0.30 0.11

C12 0.5 0.50 0.18

C13 0.2 0.20 0.07

C14 0.3 0.30 0.11

C15 0.5 0.50 0.18

C16 0.8 0.2 0.16 0.06

2.81 1.00

Table 2. Failure probabilities assigned to all
explanations

are obtained. The proposed algorithms have been included
in the tool PNDesigner (Flochova et al. [2006]).

4. UNRELIABLE OBSERVATIONS

In this section we discuss the diagnosis problem for unre-
liable systems, where faulty sensors may lead to misclassi-
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all explanations, deterministic past, probabilistic future

t0 t1 t2 t7 t8 t13 t14 t15

C2 1 1 1 0.2 1 1 1 1 0.200 0.066

C3 1 1 1 1 1 0.8 1 1 0.800 0.262

C4 1 1 1 1 1 0.8 1 1 0.800 0.262

C5 1 1 1 1 1 0.8 1 0.3 0.240 0.079

C6 1 1 1 1 1 0.8 0.7 1 0.560 0.184

C7 0.2 1 1 1 1 0.8 0.7 1 0.112 0.037

C8 1 0.3 1 1 1 0.8 0.7 1 0.168 0.055

C9 1 0.3 1 1 1 0.8 0.7 1 0.168 0.055

3.048 1.000

Table 3. Deterministic calculations in the past
and probabilistic in the future

fication or misdetection of observable events. These errors
include, in their most basic form, event insertions and dele-
tions and could arise under a variety of conditions (e.g. due
to sensor failures or in the communication links connecting
the sensors to the diagnoser). The diagnosis problem for
these systems can be reduced to that of section III by
modifying the model as follows. The misleading observ-
ability (not detecting a signal generated by an observable
event) can be solved by including a new choice in the model
structure (fig. 3a) or by adding a new arc to an existing
conflict (fig. 3b). If the unreliable observations don’t insert
an unobservable cycle in the model the algorithms can be
applied without changes. The misdetecting of an event can
be modelled with a probabilistic self loop (fig. 3cd). The
algorithms can be applied without changes in this case,
one has to take care to implement Pre and Post incidence
matrices respecting selfloops. 
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Fig. 3. Unreliable observations

5. CONCLUSIONS AND FUTURE WORKS

By using the techniques in Abbes and Benveniste [2008],
Aghasaryan et al. [1998], Benveniste et al. [2004], Jiroveanu
et al. [2008], Jiroveanu [2006] the proposed probabilistic
analysis can be can be extended to decentralized and
distributed settings (Su and Wonham [2002]). Another
direction to explore is to relax the assumption that the
PN models are free-choice, following the construction pro-
posed in Haar [2003]. The proposed algorithms have been
included in the tool PNDesigner (Flochova et al. [2006]).

REFERENCES

S. Abbes and A. Benveniste. True-concurrency probabilis-
tic models: Markov Nets and the law of large numbers.
Theoretical Computer Science, ISSN 0304-3975, 390:-3
129–170, 2008.

A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C.
Jard. Fault Detection and Diagnosis in Distributed
Systems: An Approach by Partially Stochastic Petri
Nets. Journal Discrete Event Dynamic Systems, ISSN
0924-6703, 8:203–231, 1998.

A. Benveniste, E. Fabre, S. Haar, C. Jard. Diagnosis of
asynchronous discrete event systems, a net unfolding
approach. IEEE Trans. on Aut. Control, 48:714–727,
2003.

A. Benveniste, S. Haar, E. Fabre, C. Jard. Distributed
Monitoring of concurrent and asynchronous systems-
extended version. INRIA, No. 4842, 2004.

R. Boel and G. Jiroveanu. Distributed Contextual Diag-
nosis for very Large Systems. Proceeding of WODES04,
Reims, France, 343–348, 2004.

J. Esparza. S. Romer and W. Vogler. An improvement
of McMillan’s unfolding algorithm. Lect. Notes in
Computer Science 1055, 87–106, Springer-Verlag, 1996.

J. Flochova, R. K. Boel, and G. Jiroveanu. On Probabilis-
tic Diagnosis for Free-Choice Petri Nets. Proceeding of
ACC, NYC, US, 5655–5656, 2007.

J. Flochova, F. Auxt, M. Radakovic, O. Jombik. PNDe-
signer a Tool designed for model based diagnosis and
supervisory control of DES. Proceeding of WODES’08,
ISBN 1-4244-0053-8, 471–472, 2006.

S. Genc and S. Lafortune. Distributed diagnosis of place-
bordered petri nets. IEEE Trans. on Automation Sci-
ence and Engineering, 4:206–219, 2007.

A. Giua and C. Seatzu. Fault detection for DES using
Petri nets with unobservable transitions. Proc. of IEEE
Conference on Decision and Control, Sevilla, Spain,
6323–6328.

S. Haar. Probabilistic cluster unfoldings for Petri Nets,
Technical report 1517, IRISA, Rennes, France, 2003.

G. Jiroveanu. Fault Diagnosis for Large Petri Nets , PhD
thesis, Ghent University, Belgium. 210 pp, 2006.

G. Jiroveanu, R. Boel, and B. De Schutter. Fault Diagnosis
for Timed Petri Nets. Proc. of WODES, Ann Arbor, US,
ISBN 1-4244-0053-8, 2006.

G. Jiroveanu, R.K. Boel, and B. Bordbar. On-Line
Monitoring of Large Petri Net Models Under Partial
Observation. Journal Discrete Event Dynamic Systems,
18:323–354, 2008.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event
structures and domains, part I. Theoret. Computer
Science, 13:85–108, 1981.

M. Sampath, R. Sengupta, K. Sinnamohideen, S. Lafor-
tune, and D. Teneketzis. Diagnosability of discrete event
models. IEEE Trans. Control Systems Technology, 40:
1555–1575, 1995.

R. Su and W.M. Wonham. Probabilistic Reasoning in
Distributed Diagnosis for Qualitative Systems Proc. of
IEEE Conference on Decision and Control, Las Vegas,
USA, 429–434, 2002.

D. Thorsley and D. Theneketzis. Diagnosability of
Stochastic Discrete-Event Systems. Proc. of Trans. on
Automatic Control, 50:476–492, 2005.

X. Wang, I. Chattopadhyay, and A. Ray. Probabilistic
Fault Diagnosis in DES. IEEE Conference on Decision
and Control, Nassau, Bahamas, 4794–4799, 2004.

1395


