6WCOC, Lille, France, July 5-10, 2009

TAP-study on the total oxidation of propane over a $CuO-CeO_2/\gamma-Al_2O_3$ catalyst

V. Balcaen, R. Roelant, H. Poelman, D. Poelman, G.B. Marin

Laboratory for Chemical Technology

http://www.lct.ugent.be

Introduction

• VOCs = Volatile Organic Compounds \rightarrow important air pollutants

Total catalytic oxidation

- 1. Which species are responsible for converting propane to CO_2 ?
- 2. What is the role of the different metal oxide phases?

Outline

1. Introduction

2. Experimental set-up, conditions and catalysts

3. Results

- Role and nature of active oxygen species
- Oxygen mobility
- Role of metal oxides
- 4. Conclusions

Three types of TAP pulse experiments

Experimental conditions

pre-treatment of catalyst sample

- \rightarrow heating to reaction temperature (5K/min)
- \rightarrow multi-pulses of O₂ until constant level of oxygen reponse

Participation of lattice oxygen at surface

623 K

Participation of adsorbed oxygen species

Life time of adsorbed oxygen species

Fast diffusion of oxygen species

Participation of lattice oxygen from bulk

CO2 as oxidant

C₃H₈ conversion [%]

0

0.00

0.05 0.10 0.15 mol O consumed / mol O in CuO and CeO_2 [-]

0.20

O produced from CO2

V. Balcaen, 6WCOC, Lille, France, July 5-10, 2009 CO2 adsorption on alumina $CuO-CeO_2/\gamma-Al_2O_3$ $CeO_2/\gamma-Al_2O_3$ $CuO/\theta-Al_2O_3$ θ -Al₂O₃ γ -Al₂O₃ 12 623 K Ar 10 8 Normalized CO₂ flow rate [mol, out s⁻¹ mol, in⁻¹] $M_0, CO_2 < M_0, Ar$ -> Irreversible adsorption 6 4 2 0 0.1 0.2 0.3 0 0.4 0.5 Time [s]

Conclusions

- Four origins of active oxygen species, participating in total oxidation reaction
 - 1. Lattice oxygen at surface
 - 2. Lattice oxygen in bulk
 - **3.** Surface oxygen produced from gas-phase O_2
 - 4. Lattice oxygen produced from gas-phase CO₂
- Location of these active oxygen species
 - 1. CuO and CeO₂ \rightarrow active phases \rightarrow contain active O species
 - 2. γ -Al₂O₃ \rightarrow carrier \rightarrow can produce active O species based on CO₂

This work was performed in the framework of a **Concerted Research Action** (Ghent University)

Thank you for your attention!

veerle.balcaen@ugent.be

http://www.lct.ugent.be