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ABSTRACT: In order to assess the structural reliability and redundancy with respect to deterioration, it 

is required to select appropriate models which describe the deterioration process. The parameters 

associated with these models have to be estimated through statistical interference, which introduces 

uncertainties in parameter estimates. As the structural reliability indices which are incorporated in the 

reliability-based redundancy factor can be considered as random variable, this redundancy factor itself 

is a random variable as well. In case additional information becomes available, the distribution function 

can be updated by taking into account this extra information. In this contribution, a framework is 

developed, which allows for the incorporation of additional information in the uncertain reliability 

index and the associated redundancy factor through Bayesian updating. It is shown that in case 

additional information on a main variable is gathered, this has a significant effect on the (mean) value 

and uncertainty of the reliability index and the associated redundancy factor. 

 

1. INTRODUCTION 

In the last decades, deterioration of existing 

structures has been a growing concern. 

Deterioration due to corrosion of reinforcement 

steel has been of particular interest since the 

reduction of the steel section results in a decrease 

of the structural safety. Another topic which has 

been the subject of many publications is the 

assessment of the structural robustness and 

redundancy.  

In this contribution, both topics are 

combined: the quantification of the redundancy 

of reinforced concrete beams subjected to 

chloride-induced corrosion is discussed. Further, 

since corrosion is a time-variant process, the 

associated redundancy factor will be time-

dependent. This time-dependency has been 

explicitly included in redundancy measures by 

Okasha & Frangopol (2010) and Decò et al. 

(2011); and in robustness measures by Biondini 

(2009) and Biondini & Frangopol (2010). 

The assessment of structural reliability and 

redundancy with respect to deterioration requires 

the selection of appropriate models which 

describe the structural behaviour and the 

deterioration process. The parameters associated 

with these models have to be estimated through 

statistical inference, which introduces 

uncertainties in the parameter estimates. It 

follows that due to the parameter estimation, the 

reliability index and the reliability-based 

redundancy factor can be considered as a random 

variables.  

2. DETERIORATION DUE TO CHLORIDE-

INDUCED CORROSION 

2.1. General considerations 
A common deterioration mechanism in 
reinforced concrete is corrosion of the 
reinforcement steel. Corrosion affects the steel as 
well as the concrete, hence the safety of 
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deteriorated concrete structures is reduced. 
According to the Model Code for Service Life 
Design (fib 2006), the process of corrosion of the 
reinforcement can be divided roughly into two 
time periods: the initiation period and the 
propagation period. The first phase is defined as 
the time until the reinforcement becomes 
depassivated, either by chloride ingress or by 
carbonatation. During the second phase, the 
reinforcement itself is affected: the cross-section 
is reduced. Both phases are governed by different 
stochastic parameters and can be described by 
mathematical models. Further in this 
contribution, the time to corrosion initiation Ti 
and the associated uncertainties are not 
considered. For the sake of simplicity, it is 
assumed that Ti = 0. Hence, a possible reduction 
of the structural safety level during the initiation 
phase is not considered in this contribution. 

2.2. Propagation period 
Once corrosion is initiated, the corrosion rate is 
determined by equation (1), as proposed by 
Stewart & Suo (2009): 

 𝑖𝑐𝑜𝑟𝑟(𝑡𝑝) = 𝑖𝑐𝑜𝑟𝑟(0) ∙ 0.85𝑡𝑝
−0.29 (1) 

where icorr(tp) [μA/cm²] is the corrosion rate at 
time tp, tp [years] is the time since corrosion 
initiation and icorr(0) [μA/cm²] is the corrosion 
rate at the start of corrosion propagation. The 
latter can be calculated from: 

 𝑖𝑐𝑜𝑟𝑟(0) = (2.70 (1 − 𝑤 𝑐⁄ )−1.64)/𝑎 (2) 

where w/c [-] is the water-cement ratio and 
a [cm] is the concrete cover. Equation (1) is only 
valid when no spalling occurs, which is assumed 
in this paper. 

As suggested by Stewart & Rosowsky 

(1998), the reduction in bar diameter of the 

reinforcement steel can be derived from the 

corrosion rate (since 1 μA/cm² = 0.0116 

mm/year): 

∅(𝑡𝑝) = ∅0 − 2 ∙ 0.0116 ∫ 𝑖𝑐𝑜𝑟𝑟(𝑡)𝑑𝑡
𝑡𝑝

0
 (3) 

where Ø(tp) [mm] is the reinforcement diameter 

tp years after corrosion initiation and Ø0 [mm] is 

the initial diameter. 

3. PREDICTIVE RELIABILITY INDEX 
The verification of a structure with respect to a 
certain limit state requires the definition of a 
limit state function g(.). The theoretical failure 
probability Pf for that specific limit state is then 
defined by: 

 𝑃𝑓 = ∫ 𝑓𝑿(𝒙)
 

𝑔(𝒙)<0
𝑑𝒙 (4) 

where fX(x) is the n-dimensional probability 
density function (PDF) of the n basic variables 
Xi (i=1…n) and g(x) is the limit state function, 
defined so that g(x) < 0 corresponds to failure. 
The n basic variables represent uncertain 
quantities such as material properties, actions 
(loads), geometrical properties and model 
uncertainties. The structural reliability can be 
quantified through the reliability index β, defined 
in equation (5). 

 β = Φ−1(1 − Pf) (5) 

As stated by Der Kiureghian (2008) the 

aforementioned formulations are a theoretical 

formulation of the structural reliability problem, 

since in practice neither the joint PDF fX(x) nor 

the limit state function g(x) are precisely known. 

Hence, the selection of probabilistic or physical 

models is required and the associated parameters 

have to be estimated through statistical inference 

of experimental data and observations. The 

model for fX(x) in which the parameters Θ are 

estimated, is designated 𝑓𝑿(𝒙|𝜣). 

Since the model parameters are uncertain, it 

follows from (4) and (5) that also the failure 

probability Pf and the corresponding reliability 

index β are uncertain. Hence, the random 

variables P = Pf(Θ) and B = β(Θ) can be 

introduced. As random variables, P and B have 

probability density functions, namely fP(Pf) and 

fB(β) respectively, and characteristics, such as a 

mean (μP and μB) and a variance (σP² and σB²). 

The latter expresses the uncertainty of the 

estimate of the failure probability or reliability 

index, originating from the parameter 

uncertainties. Since parameter uncertainties can 

be reduced by gathering additional information, 

these variances can also be reduced. 

The value of the reliability index that takes 

into account the influence of parameter 
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uncertainties is called the predictive reliability 

index β̃ . Der Kiureghian (2008) provides 

different methods for calculating the reliability 

index and its measures of uncertainty. One of 

these methods yields a very simple 

approximation formula for β̃: 

 β̃ ≅ μB/√1 + 𝜎𝐵
2  (6) 

The only approximation used to obtain 

equation (6) is the assumption that the reliability 

index follows a normal distribution, which is in 

many cases an acceptable assumption (Der 

Kiureghian 2008). 

The calculation of the predictive reliability 

index according to equation (6) requires the 

mean and variance of the random variable B. 

These can be calculated by making use of a first-

order approximation of the function B = β(Θ). 

This yields: 

 μB ≅ β(𝐌𝚯) (7) 

 σB
2 ≅ (∇𝚯β)𝚯=𝐌𝚯

T 𝚺𝚯𝚯(∇𝚯β)𝚯=𝐌𝚯
 (8) 

with MΘ the mean vector of Θ, ΣΘΘ the 
covariance matrix of Θ and ( ∇ Θβ)Θ=MΘ the 
sensitivity vector of the conditional reliability 
index with respect to the parameters Θ, evaluated 
at the mean values. The sensitivity vector in 
equation (8) is given by: 

 ∇𝜣𝛽 = (
𝜕𝛽

𝜕𝜃1
,

𝜕𝛽

𝜕𝜃2
, … ,

𝜕𝛽

𝜕𝜃𝑛
) (9) 

 
𝜕𝛽

𝜕𝜃𝑖
= 𝜶𝑇 (

𝜕𝒖

𝜕𝜃𝑖
)

𝒖=𝒚
 (10) 

where α is the sensitivity vector, u the vector of 

normalized basic variables, y the design point in 

standard normal space and β = α
T
y. 

As an example, consider n independent, 

normal random variables X with unknown means 

and standard deviations. Hence the unknown 

parameter vector Θ = (M, Σ) = (M1, Σ1, M2, Σ2 

… Mn, Σn). The unknown mean Mi has a mean 

value 𝑥̅𝑖  and standard deviation σMi; the 

unknown standard deviation Σi has a mean σi and 

a standard deviation σΣi. From equation (10) it 

follows, in case θi = Mi: 

𝜕𝛽

𝜕𝜃𝑖
= 𝛼𝑖

𝜕

𝜕𝑀𝑖
(

𝑥𝑖−𝑀𝑖

𝛴𝑖
)

𝑀𝑖=𝑥̅𝑖; 𝛴𝑖=𝜎𝑖

= −
𝛼𝑖

𝜎𝑖
 (11) 

And in case θi = Σi: 

∂β

∂θi
= αi

∂

∂Σi
(

xi−Mi

Σi
)

𝑀𝑖=𝑥̅𝑖; 𝛴𝑖=𝜎𝑖

= +
αi

2β

σi
 (12) 

With (8), (9), (11) and (12) the variance of 

the reliability index becomes: 

 σB
2 ≅ ∑

𝛼𝑖
2

𝜎𝑖
2 𝜎𝑀𝑖

2 +𝑛
𝑖=1 ∑

𝛼𝑖
4𝛽2

𝜎𝑖
2

𝑛
𝑖=1 𝜎𝛴𝑖

2  (13) 

The first term represents the contribution of 

the uncertainty on the mean value of the 

estimated parameters, while the second term 

represents the contribution of the uncertainty on 

the standard deviation. 

Equations (7) and (8) show that it is 

sufficient to perform one single calculation of the 

reliability index along with the parameter 

sensitivities in order to determine the mean and 

variance of the reliability index. This calculation 

is performed using the mean values of the 

parameters. 

4. ROBUSTNESS AND REDUNDANCY 

Robustness is the ability of a structure to 

withstand certain events without being damaged 

to an extent disproportionate to the original 

cause. A concept closely related to robustness is 

‘redundancy’, which is the ability of a system to 

redistribute a load which can no longer be 

sustained by some members. While redundant 

systems are generally believed to be more robust, 

there are additional methods of providing 

robustness that are not related to redundancy 

(COST TU0601, 2011). Several authors 

proposed different approaches to quantify 

structural redundancy and robustness (Sørensen 

et al. 2012). In general, the different measures 

can be subdivided in three classes, with 

increasing complexity: 

 Deterministic quantification, based on 

structural measures; 

 Reliability-based quantification, based on the 

probability of failure of an undamaged and a 

damaged system; 

 Risk-based quantification, based on a 

complete risk analysis in which 

consequences are divided into direct and 

indirect consequences. 
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The last method is the most general one, 

but, as stated before, also the most complex one. 

Therefore, in this contribution, a reliability-based 

approach is used. 

It should be noted that the aforementioned 

measures focus on two states of a structure: the 

undamaged and the damaged state. As indicated 

by Yao (1985) and Frangopol and Curley (1987), 

‘damaged’ may refer to any strength deficiency 

introduced during the design or construction 

phase of the structure as well as any deterioration 

of strength caused by external loading (e.g. 

sudden column loss) and/or environmental 

conditions (e.g. corrosion) during the life-time of 

the structure. 

One way of quantifying redundancy in a 

probabilistic way, is through the redundancy 

index RI introduced by Fu and Frangopol (1990). 

This index is based on the probability of failure 

Pf,intact of the intact system and the probability of 

failure Pf,damaged of the damaged system and is 

defined by equation (14). 

 𝑅𝐼 =
𝑃𝑓,𝑑𝑎𝑚𝑎𝑔𝑒𝑑−𝑃𝑓,𝑖𝑛𝑡𝑎𝑐𝑡

𝑃𝑓,𝑖𝑛𝑡𝑎𝑐𝑡
 (14) 

The redundancy index for a very redundant 

structure is close to zero, while it tends to infinity 

for structures that are completely damaged. 

Alternatively, the redundancy can be 

quantified by using the reliability index βi of the 

intact structure and the reliability index βd of the 

damaged structure (Frangopol and Curley 1987). 

This so-called redundancy factor βR is defined by 

equation (15) and takes values between 0, for 

completely damaged structures, and infinity, for 

intact structures. 

 𝛽𝑅 =
𝛽𝑖

𝛽𝑖−𝛽𝑑
 (15) 

Note that the reliability-based redundancy 

factor does not require the description of external 

consequences, unlike risk-based measures, which 

simplifies the calculations. 

As mentioned in section 3, the reliability 

index is, in practice, never precisely known 

because of the estimation of parameters. Hence 

the reliability indices βi and βd are not precisely 

known and based on formulas (7) and (8), the 

mean (μBi and μBd) and variance (σBi² and σBd²) 

of these random variables can be determined.  

Since the reliability index of the undamaged 

and the damaged system are not precisely 

known, also the redundancy factor, as defined by 

(15), is not precisely known. 

5. EXAMPLE 

In order to illustrate the concepts elaborated 

above, consider a reinforced concrete slab 

subjected to uniform chloride-induced corrosion. 

5.1. Characteristics 
The limit state equation with respect to bending, 
for the most heavily loaded cross-section is 
defined as in equation (16). 

𝑔(𝒙) = 𝐾𝑅𝐴𝑠𝑓𝑦 (ℎ − 𝑎 − 0.5𝛷0 −
0.5𝐴𝑠𝑓𝑦

𝑓𝑐𝑏
) 

                          −𝐾𝐸 ∙ (𝑀𝐺 − 𝑀𝑄) (16) 

where KR [-] is the model uncertainty for the 

resistance effect, As [mm²] is the cross-section of 

the reinforcement, fy [N/mm²] is the yield 

strength of the reinforcement, h [mm] is the 

height of the cross-section, fc [N/mm²] is the 

compressive strength of the concrete, b [mm] is 

the width of the cross-section, KE [-] is the model 

uncertainty for the load effect, MQ [Nmm] is the 

bending moment induced by the variable load, 

related here to a 50-year reference period, and 

MG [Nmm] is the bending moment induced by 

the permanent load. The characteristic values of 

the bending moment induced by the permanent 

load and the imposed load (i.e. MGk and MQk) are 

defined through equations (17) and (18).  

 𝜒 =
𝑀𝑄𝑘

𝑀𝐺𝑘+𝑀𝑄𝑘
 (17) 

𝑀𝑅𝑑 = 𝑀𝐺𝑘 ∙ 𝑚𝑎𝑥 {
𝛾𝐺 + 𝜓0𝛾𝑄

𝜒

1−𝜒

𝜉𝛾𝐺 + 𝛾𝑄
𝜒

1−𝜒

} (18) 

with χ the load ratio, MGk the bending moment 

induced by the characteristic value of the 

permanent load, MQk the bending moment 

induced by the characteristic value of the 

variable load, γG the partial factor for the 

permanent load (= 1.35), ξ a reduction factor for 

unfavourable permanent loads, γQ the partial 
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factor for the variable load (= 1.5), and ψ0 a 

combination factor (= 0.7). This calculation 

concept allows to evaluate the reliability of 

individual structural elements, without requiring 

additional assumptions with respect to the 

current and future use of the structure. 

The characteristics of the beam are 

summarized in Table 1 (N: normal distribution; 

LN: lognormal distribution; GU: Gumbel 

distribution (max.); DET: deterministic). The 

characteristics of the variables are based on the 

Probabilistic Model Code (JCSS 2001) and the 

Model Code for Service Life Design (fib 2006). 

Table 1. Characteristics of the RC beam. 
  Distribution µ σ 

h [mm] N 200 5 

fc [MPa] LN 38.75 4.67 

fy [MPa] N 560 30 

Ø0 [mm] N 10 0.2 

n* [-] DET 10 - 

b [mm] DET 1000 - 

w/c [-] DET 0.4 - 

a [mm] LN 15 5 

MG [Nmm] N MGk 0.1MGk 

MQ [Nmm] GU 0.6MQk 0.21MQk 

KR [-] LN 1.2 0.18 

KE [-] LN 1.0 0.10 

* The number of reinforcement bars 

The diameter of cross-section of the 

reinforcement decreases in time according to 

equation 3. Since the cross-section of the 

reinforcement decreases in time, also the 

reliability index is a function of time. Moreover, 

it is assumed that the mean values and standard 

deviations of h, fc, fy, Ø0 and a are estimated, 

based on prior information. The mean and 

standard deviation of the estimated parameters 

are summarized in Table 2. The standard 

deviation of the mean value 𝑥̅𝑖
′ is calculated from 

(19), where n’ is the number of samples used to 

estimate the mean value. The standard deviation 

of the standard deviation Σi is calculated from 

(20), where ν is the number of samples used to 

estimate the standard deviation (ν = n-1 in case it 

is estimated from the same samples). 

 𝜎𝑀𝑖 = 𝑠𝑖/√𝑛 (19) 

 𝜎𝛴𝑖 = √2/(𝜈 − 4)  (20) 

Table 2. Prior information on the basic variables. 
 Mean Mi   Standard deviation Σi 

 𝑥̅𝑖’ σMi’ n'  si’ σΣi’ ν' 

h 200 0.71 50  5 1.05 49 

fc 38.75 3.81 1.5  4.67 4.67 6 

fy 560 12.25 6  30 7.07 5 

Ø0 10 0.03 50  0.20 0.042 49 

a 15 2.04 6  5 7.07 5 

The prior parameters of the concrete compressive 

stress are based on a C25 ready mixed concrete 

(Rackwitz 1983). Further it is assumed that the 

characteristics of the height h of the cross-section 

and the initial diameter of the reinforcement Ø0 

are based on a large sample size (n=50). It is 

assumed the characteristics of the concrete cover 

a are based on a small sample size (i.e. n=6), 

hence large uncertainties are associated with 

these parameters. The Probabilistic Model Code 

(JCSS 2001) indicates that the prior information 

on structural steel may be relatively strong and 

the corresponding sample size is n‘≈50. 

However, no indications about prior information 

for reinforcement steel were found in literature. 

Therefore, a low sample size was adopted here. 

It should be noted that the cross-section of 

the reinforcement is the only parameter that 

changes in time. 

Using the characteristics mentioned above, 

the mean and variance of β are calculated 

according to equation (7) and (8), by performing 

one single calculation of the reliability index and 

the parameter sensitivities at each point in time, 

using the mean values of the parameters. The 

result of the FORM calculation with mean values 

of the parameters, as indicated in Table 2, is 

shown in Figure 1 as a solid line. The mean 

value of the reliability index decreases in time, 

from 3.55 at t=0 to 1.34 after 50 years of 

corrosion. 

Further, also the predictive reliability index, 

according to equation (6), is shown in Figure 1. 

Note that this predictive reliability index 

becomes significantly lower than the mean 

reliability index as time increases. 

Figure 2 shows the sensitivity factors for the 

basic variables as a function of time. The graph 

shows that the influence of the basic variables 
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remains more or less constant in time, except for 

the concrete cover a, which increases 

significantly in time. 

 
Figure 1. Mean value of the reliability index, 66% CI 

and predictive reliability index as a function of time. 

 
Figure 2. Sensitivity factors as a function of time. 

Using these sensitivity factors and the 

characteristics from Table 2, the standard 

deviation of the reliability index can be 

calculated as indicated in section 3. To illustrate 

the results, the dashed lines in Figure 1 show the 

interval [μB – σB ; μB + σB]. This interval contains 

approximately 66% probability. It is noted that 

due to the significant increase of the sensitivity 

factor of the concrete cover over time, also the 

standard deviation of the reliability index 

increases significantly from 0.23 at t = 0 to 1.32 

at t = 50 years. 

5.2. Updating process 

5.2.1. General 

The distributions for the reliability index can be 

updated in case additional information becomes 

available. The updating of the resistance can be 

based on a Bayesian approach applied on 

individual random variables (e.g. compressive 

strength) based on a collection of field data. 

In case a random variable follows a 

lognormal-gamma distribution (which is the case 

for the concrete compressive strength and the 

concrete cover in this example), the parameters 

of the prior distribution (i.e. 𝑥̅′
𝑙𝑛𝑋, n’, s’lnX, ν’) 

can be updated easily when a set of observations 

(𝑥̅  
𝑙𝑛𝑋, n, slnX, ν) are available (Rackwitz 1983): 

 𝑛′′ = 𝑛′ + 𝑛 (21) 

 𝜈′′ = ν′ + ν + 1 (22) 

 𝑥̅𝑙𝑛𝑋
′′ =

𝑛′𝑥̅𝑙𝑛𝑋
′ +𝑛𝑥̅𝑙𝑛𝑋

 

𝑛′′  (23) 

 𝑠lnX
′′ =

1

ν′′
[(𝜈′𝑠lnX

′ + 𝑛′ 𝑥̅𝑙𝑛𝑋
′     2) +

                          (𝜈𝑠𝑙𝑛𝑋 + 𝑛𝑥̅𝑙𝑛𝑋
       2 ) − 𝑛′′𝑥̅𝑙𝑛𝑋

′′     2] (24) 

In this section, the updating process of the 

reliability index and the redundancy factor is 

illustrated based on the updating of the concrete 

compressive strength and the concrete cover. 

5.2.2. Updating of concrete strength 

Consider that 7 compressive strength tests were 

performed, resulting in a mean value 

𝑥̅ = 31.5 MPa and a standard deviation 

s = 2.6 MPa. Consequently, the prior parameters 

for the concrete compressive strength, mentioned 

in Table 2, can be updated according to section 

5.2.1. The prior and posterior parameters as well 

as the test data are given in Table 3. 

Table 3. Prior and posterior distribution parameters 

for the concrete compressive strength. 

Prior Test Data Posterior 

𝑥̅𝑙𝑛𝑋
′ = 3.65 𝑥̅𝑙𝑛𝑋

 = 3.45 𝑥̅𝑙𝑛𝑋
′′ = 3.485 

𝑛′ = 1.5 𝑛 = 7 𝑛′′ = 8.5 

𝑠𝑙𝑛𝑋
′ = 0.12 𝑠𝑙𝑛𝑋 = 0.082 𝑠𝑙𝑛𝑋

′′ = 0.099 

𝜈′ = 6 𝜈 = 6 𝜈′′ = 13 
Subsequently, this updated distribution for the 

concrete compressive strength is used to update the 

mean and variance of the reliability index by 

performing one single calculation of the reliability 

index and the parameters sensitivities.  

Figure 3 shows the updated reliability index 

βupdated fc compared to the reliability index before 

updating βprior and the confidence interval (CI) 

[μB – σB ; μB + σB] before and after updating. 
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Figure 3. Mean reliability index and 66% CI after 

updating of the concrete compressive strength 

It is noted that updating the concrete 

compressive strength distribution does not result 

in significant changes of the reliability index. 

This is due to the (constant) low sensitivity 

factor of the compressive strength, as can be seen 

in Figure 2. Since the updating of the concrete 

compressive stress does not result in a significant 

change of the reliability index, this will not result 

in a significant change in the redundancy factor. 

5.2.3. Updating of concrete cover 

The reliability index and the redundancy factor 

can be updated in case additional measurements 

of the concrete cover are performed. Consider 

that 10 measurements of the concrete cover were 

performed, resulting in a mean value of 19.2 mm 

and a coefficient of variation of 0.25, then the 

updating of the prior parameters of the concrete 

cover is shown in Table 4. 

Table 4. Prior and posterior distribution parameters 

for the concrete cover. 

Prior Test Data Posterior 

𝑥̅𝑙𝑛𝑋
′ = 2.65 𝑥̅𝑙𝑛𝑋

 = 2.92 𝑥̅𝑙𝑛𝑋
′′ = 2.82 

𝑛′ = 6 𝑛 = 10 𝑛′′ = 16 

𝑠𝑙𝑛𝑋
′ = 0.33 𝑠𝑙𝑛𝑋 = 0.24 𝑠𝑙𝑛𝑋

′′ = 0.27 

𝜈′ = 5 𝜈 = 9 𝜈′′ = 15 

 

Using the updated distribution for the 

concrete cover, one can update the mean and 

variance of the reliability index in a similar way 

as for the concrete compressive strength. The 

results are shown in Figure 4. 

 
Figure 4. Mean reliability index and 66% CI after 

updating of the concrete cover. 

It can be seen that updating the distribution 

of the concrete cover results in significant 

changes in the reliability index. Updating the 

concrete cover, towards higher values than 

originally assumed, results in an increase of  the 

mean value of the reliability index compared to 

the situation before updating, except in the early 

years after corrosion initiation. The latter is due 

to the fact that at small corrosion levels, the 

influence of the concrete cover on the corrosion 

process is dominated by the influence of the 

concrete cover on the effective depth of the 

reinforcement. 

Further, it is noted that the standard 

deviation of the reliability index is significantly 

reduced due to the updated concrete cover, 

especially starting from 20 years: at 50 years, the 

standard deviation is reduced from 1.31 to 0.31. 

5.2.4. Redundancy factor 

Finally, the probability density function for the 

redundancy factor before and after updating was 

determined using Monte Carlo simulations, 

assuming a normal distribution for the reliability 

index. The prior and posterior probability density 

functions of the redundancy factor are shown in 

Figure 5. Since updating the concrete 

compressive stress does not result in significant 

changes of the reliability index, also the 

influence on the redundancy factor is marginal: 
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the prior and updated distribution function of the 

redundancy factor nearly coincide. The influence 

is however significant in case of updating of the 

concrete cover: the distribution of the 

redundancy factor shifts to higher values, 

indicating a higher redundancy with respect to 

corrosion than initially anticipated.  

 
Figure 5. Prior (βr,prior) and updated (βr,update fc and 

βr,update a) redundancy factor. 

6. CONCLUSIONS 

The quantification of redundancy under 

parameter uncertainties was investigated. 

Therefore, the framework, as developed by Der 

Kiureghian (2008) for the reliability index under 

parameter uncertainties, was extended towards a 

reliability-based redundancy factor. 

Subsequently, this framework was applied on a 

reinforced concrete beam, subjected to chloride-

induced corrosion in order to illustrate the 

updating process of different individual random 

variables in case additional information becomes 

available. It was shown that the effect of the 

updating is highly dependent on the sensitivity 

factor of the variable under consideration, 

obtained through a FORM analysis using the 

mean values of all random variables. In case 

additional information on a main variable is 

obtained, this has a significant effect on the 

(mean) value and uncertainty of the reliability 

index and the associated redundancy factor. 
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