
STATICROUTE: A NOVEL ROUTER FOR THE DYNAMIC PARTIAL
RECONFIGURATION OF FPGAS

Brahim Al Farisi, Karel Bruneel, Dirk Stroobandt

Ghent University, ELIS Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{Brahim.AlFarisi, Karel.Bruneel, Dirk.Stroobandt}@UGent.be

ABSTRACT
Using Dynamic Partial Reconfiguration (DPR) of FPGAs,
several circuits can be time-multiplexed on the same chip
region, saving considerable area. However, the long recon-
figuration time when switching between circuits remains
a large problem with DPR. In this paper we show it is
possible to significantly reduce reconfiguration time when
the number of circuits is limited. We tackle the problem
by reducing the time needed to reconfigure the FPGA’s
routing. We divide the configuration memory of the FPGA’s
routing in a static and a dynamic portion. A novel router,
called StaticRoute, is presented that is able to route the
nets of the different circuits in such a way that the static
portion is shared and only the dynamic portion needs to
be reconfigured. The static portion of the configuration
memory does not need to be rewritten during run-time.
In the experiments we show it is possible to reach a 2×
speed-up of the reconfiguration process, while the increase
in wire length per circuit is limited.

I. INTRODUCTION
Dynamic partial reconfiguration (DPR) of FPGAs allows

designers to time-multiplex several circuits on the same
chip area, called the reconfigurable region (RR). DPR
makes it possible to use smaller and thus cheaper FPGAs,
because FPGA resources can be reused between circuits.

The configuration memory of the RR consists of SRAM
memory cells that control the content of the look-up tables
and the state of the routing switches. To implement a
circuit in the RR, a configuration needs to be generated
that contains the binary values that need to be written in
the RR’s memory cells. In conventional DPR systems, a
configuration is generated for every circuit by implement-
ing it separately in the RR. Every memory cell of the RR
then corresponds to a collection of binary values, one for
each circuit. When these binary values are the same, we
call this collection a static bit. Otherwise this collection is
called a dynamic bit. Memory cells containing a static bit
do not need to be rewritten during run-time.

However, in current FPGAs, the reconfiguration gran-
ularity is a collection of memory cells called a frame.

A whole frame needs to be rewritten, even when only
one memory cell of the frame contains a dynamic bit.
The problem with conventional DPR systems is that the
dynamic bits are scattered over the frames of the config-
uration memory, making it necessary to reconfigure the
complete reconfigurable region [1]. This leads to long
reconfiguration times, making DPR less useful for more
dynamic applications [2] [3].

In this paper we propose a novel approach to reduce
the reconfiguration time when the number of circuits to be
implemented in the RR is limited. It is clear that during
reconfiguration most time is spent writing the routing’s
configuration memory. We therefore focus on reducing the
time to reconfigure the FPGA’s interconnection network.

Our novel technique consists of two steps. In a first step
the configuration memory of the RR’s routing switches
is divided in a static and a dynamic portion. Care needs
to be taken that the memory cells of the static portion
reside in other frames than those of the dynamic portion.
Then, in a second step, the placement of conventional
DPR is retained, but the connections of all circuits are
routed together using our novel router, which we named
StaticRoute. StaticRoute routes the connections in such a
way that dynamic bits are avoided in the static switches of
the RR. The dynamic bits are thus clustered in the dynamic
portion of the configuration memory. To the best of our
knowledge, we are the first to propose such an approach.

In this paper we introduce the concept of switch conges-
tion. A switch is said to be congested when it is in a static
portion, but is controlled by a dynamic bit. StaticRoute is
based on the PathFinder algorithm [4] and makes use of
the negotiated congestion mechanism to resolve both wire
and switch congestion. In our experiments we show that a
speed up of almost 2× of the reconfiguration process can
be obtained, while the increase in wire length is limited.

Our paper starts with a comparison of the conventional
DPR tool flow and our newly proposed tool flow using
StaticRoute in Section II. StaticRoute is discussed in more
detail in Section III. The experiments and results are
discussed in Section IV. Finally, we conclude in Section V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55824228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. DYNAMIC PARTIAL RECONFIGURATION
With dynamic partial reconfiguration (DPR) it is possible

to implement different circuits, that are not needed at the
same time, on the same FPGA area. This area is generally
called the reconfigurable region (RR). Whenever one wants
to change the implemented circuit, an amount of time is
needed to rewrite the configuration memory. This is called
the reconfiguration time. The subsystem that performs the
reconfiguration is called the reconfiguration manager and
is generally implemented in software. In this section we
discuss two tool flows that use DPR: the conventional DPR
flow and our novel approach using StaticRoute.

II-A. Conventional DPR flow
The conventional DPR tool flow implements every cir-

cuit separately in the reconfigurable region by following the
typical steps of the FPGA CAD flow (synthesis, technology
mapping, placement and routing), as shown in Figure 1(a).
For every circuit a configuration is generated that contains
the binary values needed to write the configuration mem-
ory of the reconfigurable region. To switch between the
different circuits the reconfiguration manager writes the
reconfigurable region with the appropriate configuration.

After implementation, there is a configuration available
of the RR for every circuit. Every memory cell of the
RR then corresponds to a collection of binary values, each
from a different circuit. When these binary values are the
same, we call this collection a static bit. Otherwise this
collection is called a dynamic bit. If a memory cell contains
a static bit, it means it has the same value for the different
implemented circuits. Static bits do not need to be rewritten
during run-time.

However, in current FPGAs, the reconfiguration gran-
ularity is a collection of memory cells called a frame.
A whole frame needs to be rewritten, even when only
one memory cell of the frame contains a dynamic bit.
The problem with conventional DPR systems is that the
dynamic bits are scattered over the frames of the con-
figuration memory, making it necessary to reconfigure
the complete reconfigurable region [1]. This may lead to
reconfiguration times that are too long for more dynamic
applications [3] [2].

II-B. Novel tool flow using StaticRoute
In our method, the configuration memory of the RR’s

routing is split into two parts: a static part and a dynamic
part. The proposed tool flow is presented in Figure 1(b).
Instead of running the tool flows completely separately for
the different circuits, the idea is to have a joint routing
of the circuits. In this case, the tool flow is run separately
until placement, generating a placed design for each circuit.
Then the nets of all the circuits are merged into one set of
nets. During this merging step, each net is automatically
annotated with the name or ID of the circuit it belongs to.

Fig. 1. The conventional DPR tool flow (a), compared to
our novel approach which uses StaticRoute (b).

The set of merged connections is then routed with
StaticRoute. The information annotated during merging is
used by StaticRoute to generate one static configuration
and a dynamic configuration for every circuit. The static
configuration contains the binary values for the static
part of the RR’s routing. It only needs to be loaded
in the FPGA’s configuration memory once at start-up.
The dynamic configurations contain the remainder of the
configuration of the RR. These are used to switch between
circuits during run-time. Since the dynamic configurations
are much smaller than a configuration of the complete RR,
reconfiguration time can be reduced considerably.

III. STATICROUTE

StaticRoute is based on the PATHFINDER algorithm, the
most commonly used algorithm for FPGA routing. In the
first part of this section we will therefore first give a brief
discussion of PATHFINDER.

Before StaticRoute is used, the routing switches of the
reconfigurable region (RR) are split into two parts: a static
part and a dynamic part. Then the connections of all circuits
are routed together in such a way that there are no dynamic
bits controlling static switches. To also take the switches
into consideration during routing, the representation of the
FPGA’s architecture needs to be extended. This is explained
in section III-B.

Detecting dynamic bits after the configurations are gen-
erated is easy. When a memory cell has different values
in the different configurations, it contains a dynamic bit.
This means it will have to be rewritten during run-time. In
section III-C we will, however, show that it is also possible
to already detect dynamic bits during routing.

Finally, section III-D handles how StaticRoute extends
the cost function of PATHFINDER, so that dynamic bits are
avoided in the static portion of the configuration memory.

III-A. The Pathfinder algorithm
A conventional router calculates the Boolean values that

need to be stored in the memory cells of the configurable
interconnection network so that the physical logic blocks
are connected as is specified by the nets in the mapped
circuit. The main algorithm used to solve this problem is
PATHFINDER [5].

PATHFINDER presents the available routing resources of
the FPGA in an easy-to-explore data structure, the routing
resource graph (RRG). The RRG is a directed graph, where
each node represents a routing wire on the FPGA and each
directed edge represents a routing switch on the FPGA1.

In the PATHFINDER algorithm, the connections that need
to be routed are organized in nets. These are sets of
connections that share the same source. During the first
routing iteration,nets can share resources at no extra cost
and thus, each net is routed with a minimum number of
wires. In subsequent routing iterations, the algorithm rips
up and reroutes all the nets in the input circuit. A wire
is said to be congested if it is used by more than one
net. The routing iterations are repeated until no shared
resources exist or, in other words, the wire congestion
is resolved. This is achieved by gradually increasing the
cost of sharing resources between nets, a technique called
negotiated congestion. The cost function of a wire in the
RRG is

cost(n) = b(n) · p(n) · h(n), (1)

where b(n) is the base wire cost (equal to 1), p(n) is the
present wire congestion penalty and h(n) is the historical
wire congestion penalty. The factor p(n) is updated every
time a net is rerouted and is used to avoid wire congestion
during one routing iteration. The factor h(n), on the other
hand, is only updated every routing iteration. It is used to
make heavily used resources in past routing iterations more
expensive. In this way a wire congestion map is built, which
enables nets to avoid routing through heavily congested
wires, if possible. More details on PATHFINDER can be
found in [4].

III-B. Extended routing resource graph
In a standard RRG the nodes represent wires and the

directed edges represent the switches. StaticRoute does not
make use of a standard RRG, but of an extended RRG.
This is an RRG where also the switches are represented
as nodes. An example of an extended RRG is shown in
Figure 2. The round nodes are wires and the square nodes
switches.

1This is a simplification.The nodes can also represent logical pins or
sources or sinks. These are treated the same [4].

Fig. 2. An example of a switch S controlled by a dynamic
bit (a) and one controlled by a static bit (b).

Such a representation is necessary for two reasons. First,
it is possible to mark certain switches as being static. The
rest of the switches are considered dynamic. This way the
RR’s routing, and thus also its configuration memory, is
split up in a static and a dynamic part.

Second, in an extended RRG certain information can also
be associated with the switches during routing. This can be
a cost or information on which circuits are using a certain
switch.

III-C. Detecting dynamic bits in the extended RRG
As can be seen in Figure 1 (b), the input to StaticRoute

is a set containing the nets of all circuits that need to be
implemented in the reconfigurable region. These nets are
all annotated with the ID of the circuit they belong to, as
explained in Section II-B. When a net uses a node during
routing, it also gets annotated with this information. Our
starting point in this section is therefore an extended routing
resource graph annotated with the circuits’ IDs.

Let us assume 4 circuits, numbered 1 to 4, are im-
plemented in the RR. In Figure 2(a) we see a routing
multiplexer of the RR, represented as an extended RRG. It
connects the top wire to its output for circuits 1 and 2. The
middle wire is connected to the output for circuit 3. Switch
S therefore needs to be closed for circuit 1 and 2. It needs to
be open for circuit 3, as not to add any extra capacitance of
the wires of the other circuits. S has a don’t-care value for
circuit 4, because this circuit is not using this multiplexer.
In this case, S clearly is controlled by a dynamic bit, since
it has different values for different circuits.

Let us look at a second example in Figure 2(b). In this
case the switch S has value 1 for circuits 1, 2 and 3. And
it has a don’t-care value for circuit 4. It is clear that when
a switch and its connected wires are used by the same
circuits, it does not have to be changed during run-time.
The switch is closed for the circuits that use it and has a
don’t-care value set to 1 for the other circuits.

In general, in the extended RRG, a switch node S
connects two wire nodes Win and Wout. Let us assume
that S is used by a set of circuits CS . Win and Wout

are used by Cin and Cout respectively. We state that S is
controlled by a dynamic bit if:

((CS 6= Cin) ∨ (CS 6= Cout)) ∧ CS 6= φ. (2)

The condition CS 6= φ is necessary to exclude unused
switches, which are always static.

III-D. Novel cost function
In the previous sections we explained that in the extended

RRG some switches are marked as being static. We also
presented a way to detect dynamic bits in the extended
routing resource graph. In this section we introduce the
term switch congestion. A switch is said to be congested
when it is marked as static, but is controlled by a dynamic
bit.

In the PATHFINDER algorithm the cost of using a wire
only takes into account wire congestion. The nets are
ripped up and rerouted until there are no wires that are
congested. In this section we describe how we extended this
algorithm to also take switch congestion into consideration.
StaticRoute rips up and reroutes the nets of all circuits until
all wire and switch congestion is resolved. The ordering
of the nets is in such a way that the nets are traversed per
circuit.

In the PATHFINDER algorithm a connection of a net is
routed by searching the path of wire nodes with lowest cost
in the routing resource graph. In our algorithm the same
happens in the extended RRG. Except that, an extra cost per
wire is added, to take switch congestion into consideration.
The cost of a node in the extended RRG is

cost(n, c) =

{
costw(n, c) + costs(n) if n is a wire
0 if n is a switch

(3)
When a wire is used, the congestion of all the static

switches that are connected with it are affected. That is
why the cost of switch nodes in the path of the RRG is
zero and the cost addition is made in the wires. Switch
nodes are used to hold information needed to determine
the switch congestion penalty costs(n).

The term costw(n, c) takes wire congestion into consid-
eration and is very similar to Equation 1. Remember that
StaticRoute routes the nets of all circuits together. However,
when a net of the circuit c is routed, only the other nets
of c are taken into consideration for the wire congestion.
This is because nets of different circuits do not cause wire
congestion. They are never present on the FPGA at the
same time and therefore can share wires. The equation for
costw(n, c) is

costw(n, c) = p(n, c) · h(n, c), (4)

where p(n, c) and h(n, c) are the present and history
wire congestion penalty for circuit c. These are calculated
like in [4].

Fig. 3. Example where the switches of the set S(n) for a
wire node n are indicated in grey in the extended RRG.

The term costs(n) takes switch congestion into consid-
eration. As mentioned in the previous section, to determine
whether a switch is congested both the wires it connects
are needed. Therefore the router assigns the cost for switch
congestion using a set S(n) that is the union of the fan-
in switch nodes of the current wire node n and the fan-
out switch nodes of the previous wire. In Figure 3 an
example is shown where the switches of S(n), associated
with a wire node n, are indicated in grey. In this set S(n),
we can use Equation 2 to identify a subset of congested
switches we will call C(n). The algorithm only takes into
consideration the switch congestion caused by the current
net. This means the current circuit is in Cin or Cout.

Given a wire node n, with its associated set of congested
switches C(n), we have following equation for the switch
congestion penalty

costs(n) = ps(n) · hs(n), (5)

where ps(n) and hs(n) are the present and history
switch congestion penalty. The factor ps(n) resolves switch
congestion during one iteration and is given by:

ps(n) = 1 + |C(n)| · pfac, (6)

Note that if the use of a wire results in more congested
switches it gets penalized more. The factor hs(n) takes
into consideration the switch congestion that occurred in
the previous iterations. It uses the congestion map that is
built in the switch nodes. It is given by:

hs(n) =
∑

m∈C(n)

hs(m), (7)

where hs(m) is the history switch congestion penalty of
one switch node m. This is updated every routing iteration
i as follows:

his(m) =


0 if i = 1
h(i−1)(m) if m is not congested
h(i−1)(m) + hfac otherwise

.

(8)
The way the factors pfac and hfac change as the

algorithm progresses is called the routing schedule. The
same routing schedule is used for both wire and switch
congestion [4].

IV. EXPERIMENTS AND RESULTS

IV-A. Benchmarks

To validate our proposed tool flow we conducted ex-
periments using 3 different applications. In the first 2
experiments typical multi-mode applications were used:
a regular expression matching (RegExp) and an adaptive
filtering application (FIR). In the last 2 experiments general
MCNC benchmarks were used.

In [6] a tool was developed that can generate a hardware
engine, written in VHDL, that matches a certain regular
expression. In the first experiment, we chose 5 middle-sized
regular expressions out of the Bleeding Edge rules set [7]
and with this tool generated the corresponding circuits. In
the second experiment we generated 5 fixed coefficient
finite impulse response (FIR) filters. The FIR filters are
fully pipelined, have 16 taps and the width of the input
and the coefficients is 8 bit. The values for the coefficients
were chosen randomly, after which all the constants were
propagated. Such FIR filters are 3 times smaller than the
generic version.

In the third experiment, we chose 5 circuits out of the
general MCNC benchmark suite [8] that were of similar
size compared to the rest of the circuits in the previous
experiments(MCNC). In the fourth experiment we chose
5 circuits out of the MCNC20 benchmark suite [8]. The
names of the MCNC and MCNC20 circuits used in this
experiments can be found in Table II.

For every set of circuits the minimum, average and
maximum number of LUTs are reported in Table I. In each
set all possible 10 combinations of 2 circuits out of 5 were
chosen. These combinations of 2 circuits were each time
implemented using both the conventional DPR flow and
our novel approach using StaticRoute.

Table I. Size of the LUT circuits used in the experiments.
Minimum Average Maximum

RegExp 500 516 543
FIR 235 302 371
MCNC 264 310 404
MCNC20 1135 1323 1544

IV-B. FPGA architecture
StaticRoute was implemented based on our JAVA version

of the VPR (Versatile Place and Route) wire-length driven
router [4]. VPR is the most commonly used academic tool
for place and route algorithms [4] . The FPGA architecture
used is described in 4lut_sanitized.arch. This is an
FPGA architecture file included in the distribution of VPR.
It has logic blocks containing one 4-LUT and one flip-
flop and the wire segments in the interconnection network
only span one logic block. Two modifications were made to
the routing architecture to better resemble the commercial
available FPGAs. Wilton switch blocks and unidirectional
wires are used instead of a disjoint switch blocks and
bidirectional wires [9].

We note that the techniques and tools we use in this
paper are independent of the architecture used. The number
of inputs of the LUTs is simply an input parameter of
the tool flow. Also, different routing architectures can be
used since StaticRoute uses a straightforward extension of a
standard representation of the routing infrastructure called
the routing resource graph.

Since there is no other functionality implemented on the
FPGA, the reconfigurable region comprises the complete
FPGA in our experiments. The minimum square area of
the FPGA was chosen that fits both circuits.

The average minimum channel width in the industrial
benchmark set of VTR is 98 tracks [10]. To determine the
order of magnitude of typical commercial FPGAs, Altera’s
Chip Planner Tool can be used [11]. Using this tool it was
determined that routing channels of commercial FPGAs,
like the Stratix IV, typically consist of several 100 tracks.
The channel width in these experiments was chosen only
50% bigger than the minimum needed. Keeping the relative
overprovisioning of channel width constant will allow us
to make a fair comparison of the wire lengths of different
circuits.

IV-C. Results
We point out that both our tool flow and the conventional

DPR flow have the same gains in area. For the regular
expression matching application and the MCNC bench-
marks, only an area of around 50% is required compared
to the static implementation of the 2 circuits. The adaptive
filtering application requires an area which turned out to
be only 33% of the generic FIR filter.

Two other metrics were used to further evaluate the
quality of the implementation: reconfiguration time and

Table II. Name of the MCNC and MCNC20 circuits used
in the experiments.

MCNC e64, rd73, s400, s1238, s1494
MCNC20 apex4, alu4, tseng, ex5p, misex3

50% 75%
 0%

10%

20%

30%

40%

50%

60%

Relative portion of static switch blocks

D
ec

re
as

e
in

 re
co

nf
ig

ur
at

io
n

tim
e

re
l.

to
 c

on
ve

nt
io

na
l D

PR

Decrease in reconfiguration time

RegExp
FIR
MCNC
MCNC20

Fig. 4. Decrease in reconfiguration time compared to
conventional DPR.

Fig. 5. An example of a 3×3 island style FPGA where
50% of the switch blocks are marked static (in grey).

wire-length. The reconfiguration time gives an indication
on how fast the system can adapt when necessary. Wire
length is an important metric for the quality of a circuit,
since it correlates with power usage and performance
(maximum clock frequency) of a circuit [4]. We focus
on the effect the relative size of the static portion of the
configuration memory has. We average the results over
the implemented circuits and use error bars to indicate
minimum and maximum values.

IV-C1. Reconfiguration time

Since the experiments were done in our JAVA based version
of VPR, there are no configuration frames defined. As can
be seen in Figure 5, the wires in an island style FPGA are
organized as channels in between the logic blocks (LBs).
The switches that connect the wires and the logic block
pins are aggregated as connection blocks (CBs) and switch
blocks (SBs). The connection blocks connect the logic
block pins to the wires in their neighboring channel while
the switch blocks connect the wires from one channel to
wires from an adjacent channel.

Marking the static bits in the routing infrastructure
was done based on the switch blocks. For each set of
benchmarks, we compare the cases where 50% and 75% of
the switch blocks was marked static. In Figure 5 an example
is shown where 50% of the switch blocks is marked static.
As can be seen, this is done in such a way that the selected
switch blocks are spread uniformly over the FPGAs area.
The connection blocks in the routing were all kept dynamic.

In this experiment we look at the total reconfiguration
time. For conventional DPR this is the sum of the LUT
bits and the bits that control the switches. For our novel
approach, that uses StaticRoute, we use the same, but don’t
count the routing bits that reside in the static portion of the
configuration memory. As explained earlier, the bits in the
static portion are shared by all circuits and thus don’t need
to be rewritten during run-time.

In Figure 4 the relative decrease in reconfiguration time
is shown compared to the conventional DPR flow. Static
switch blocks do not need to be reconfigured during run-
time. The decrease in reconfiguration time is therefore
directly proportional to the relative portion of static switch
blocks. It is approximately the same for all benchmarks
considered. This is, on average, 40 % when half of the
switch blocks are static to 50% for 75% static switch
blocks.
IV-C2. Wire length
In our proposed tool flow the different circuits are not
implemented separately, as is the case in the conventional
DPR flow. Instead, the circuits are routed together using
StaticRoute. In this section we assess the impact this has
on the wire length. Each circuit uses a set of wires when
it is active. We compare the size of this set in the case
of implementation with the conventional DPR flow and
StaticRoute. This is then averaged over all circuits.

The results are shown in Figure 6. Again, the relative
increase in wire length is dependent upon the relative size
of the static portion. When 50 % of the switch blocks are
marked static, then the wire length increases on average
a few percent and the maxima are around 5 %. For
some benchmarks the wire length even decreases a little
when using StaticRoute, this is because both PATHFINDER
and StaticRoute are heuristics. For 75 % static switch
blocks the average increases somewhat, especially for the
regular expression applications. Also the maxima increase

50% 75%
−5%

 0%

 5%

10%

15%

Relative portion of static switch blocks

In
cr

ea
se

 in
 w

ire
s

re
la

tiv
e

to
 c

on
ve

nt
io

na
l D

PR

Increase in wire length

RegExp
FIR
MCNC
MCNC20

Fig. 6. Wire length increase of StaticRoute compared to
conventional DPR.

to around 10 %. We can conclude that the wire length
increase of using this technique, when implementing 2
circuits, is limited.

V. CONCLUSION

In this paper we introduced the notion of switch conges-
tion. This occurs when a dynamic bit resides in the static
portion of the configuration memory. We showed that it is
possible to already detect dynamic bits during routing in
the extended routing resource graph. An extended version
of the PATHFINDER algorithm, called StaticRoute, was
presented that was used to route all circuits together. It is
able to resolve both wire and switch congestion. Therefore,
using StaticRoute, the dynamic bits are no longer scattered
over the complete configuration memory of the routing.
Instead they are clustered in the dynamic portion. To the
best of our knowledge we are the first to propose such a
method, which can be used in a frame based reconfigura-
tion approach. In our experiments we showed that, using
StaticRoute, a 2× speed up of the reconfiguration process
can be obtained, while the increase in wire length is limited.
In the future we would like to implement our novel tool
flow on a commercial FPGA. We are also looking at ways
to automatically mark the static portion of the routing’s
configuration memory.

VI. REFERENCES

[1] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and
P. Lysaght, “Modular dynamic reconfiguration in Virtex
FPGAs,” Computers and Digital Techniques, vol. 153, no. 3,
pp. 157 – 164, 2006.

[2] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance
of partial reconfiguration in FPGA systems: A survey and
a cost model,” ACM TRETS, vol. 4, no. 4, pp. 36:1–36:24,
Dec. 2011.

[3] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys
(csuR), vol. 34, no. 2, pp. 171–210, 2002.

[4] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and
CAD for Deep-Submicron FPGAs. Norwell, MA, USA:
Kluwer Academic Publishers, 1999.

[5] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-
based performance-driven router for FPGAs,” in FPGA,
1995, pp. 111–117.

[6] I. Sourdis, J. Bispo, J. Cardoso, and S. Vassiliadis, “Regular
expression matching in reconfigurable hardware,” Journal of
Signal Processing Systems, vol. 51, pp. 99–121, 2008.

[7] Bleeding edge threats website. [Online]. Available:
http://www.bleedingthreats.net

[8] S. Yang, Logic synthesis and optimization benchmarks user
guide: version 3.0. Citeseer, 1991.

[9] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional
and single-driver wires in fpga interconnect,” in Field-
Programmable Technology, 2004. Proceedings. 2004 IEEE
International Conference on. IEEE, 2004, pp. 41–48.

[10] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders,
A. Somerville, K. B. Kent, P. Jamieson, and J. Anderson,
“The VTR project: architecture and CAD for FPGAs from
verilog to routing,” in Proceedings of FPGA. ACM, 2012,
pp. 77–86.

[11] Altera, Engineering Change Management with the Chip
Planner, 2012.

