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Abstract—Software Defined Networking is a networking
paradigm which allows network operators to manage networking
elements using software running on an external server. This
is accomplished by a split in the architecture between the
forwarding element and the control element. Two technologies
which allow this split for packet networks are ForCES and
Openflow. We present energy efficiency and resilience aspects
of carrier grade networks which can be met by Openflow. We
implement flow restoration and run extensive experiments in an
emulated carrier grade network. We show that Openflow can
restore traffic quite fast, but its dependency on a centralized
controller means that it will be hard to achieve 50 ms restoration
in large networks serving many flows. In order to achieve 50 ms
recovery, protection will be required in carrier grade networks.

Index Terms—Openflow, Restoration, Energy Efficiency

I. INTRODUCTION

The goal of Software Defined Networking is to provide
open user-controlled management of the forwarding hardware
of a network element. Openflow was designed particularly
to deploy and test experimental protocols in the production
quality campus network Stanford uses every day, instead of in
a separated lab environment [1]. If operators want to be able
to program the behaviour of high speed networking elements
such as IP routers or Ethernet switches for their custom needs,
they require direct programming of the forwarding hardware.
Modern routers/switches contain a proprietary FIB (Forward-
ing Information Base), which is implemented in hardware
using TCAMs (Ternary Content Addressable Memory).

Openflow provides control of forwarding hardware by pro-
viding a standardized abstraction of it called a Flowtable.
An Openflow switch is a network element implementing an
instance of the (abstract) Flowtable, and has a secure channel
to the Openflow controller, which manages the Openflow
switches using this Openflow protocol. The Openflow protocol
supports messages to add, delete and modify flow entries in
the Flowtable. A flow entry consists of (1) a packet header
which defines the flow, (2) an action which defines how the
packet should be processed, and (3) statistics which keep track
of the number of packets per flow, the number of bytes per
flow, and the time since the last packet matched per flow.

The controller installs these flow entries in the Flowtables
of the Openflow switches. Incoming packets processed by
the Openflow switches are compared against the flow entries
in the Flowtable. If a matching flow entry is found, the
predefined actions for that entry are performed on the matched
packet. If no match is found, the packet is forwarded to the
controller over the secure channel (PACKET IN message).
The controller is responsible to determine how the packet
should be handled; either by returning this specific packet to
the switch and stating which port it should be forwarded to
(PACKET OUT message) or by adding valid flow entries in
the Openflow switches (FLOW MOD message).

In the access/aggregation domains of most carriers, an
Ethernet-based aggregation is used to provide services for
residential and business customers. Implementing a split archi-
tecture between control and forwarding in these areas creates
the opportunity for network operators to use commodity hard-
ware under the control of centralized software to perform the
intricate functions of specialized aggregation domain network
elements at much a lower hardware cost. Moreover, Openflow
allows virtualization and thereby supports service separation.
As mobility is essential, the infrastructure to provide wireless
services is a must and the aggregation network is also used to
guarantee mobile backhauling.

The term carrier grade [2] describes a set of functionalities
and requirements that architectures should support in order to
fulfill the operational part of network operators. The require-
ments are (1) Scalability (2) Reliability (3) Quality of Service
(QoS) and (4) Service Management. In order to be applied to
carrier grade networks, Openflow must be able to meet these
requirements. In this paper, we focus on reliability, and we also
show how Openflow can enable energy-efficiency improving
strategies to be deployed in the network. Reducing network
power consumption can lead to improved hardware scalability
and reduces the carbon footprint.

II. ENERGY EFFICIENCY IN OPENFLOW NETWORKS

An important goal for future networking is the reduction
of its carbon footprint. The attention for climate change is
influencing the ICT sector. ICT accounts for 2 to 4% of
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the worldwide carbon emissions [3]. About 40 to 60% of
these emissions can be attributed to energy consumption in
the user phase, whereas the remainder originates in other
life cycle phases (material extraction, production, transport,
end-of-life). By 2020 the share of ICT in the worldwide
carbon emissions is estimated to double in a business as
usual scenario. Since optical signals consume less power than
electrical signals, optical technologies could enable higher
energy efficiency. There is a worldwide increase in research
efforts in the last years, with initiatives such as the current EU
funded Network of Excellence TREND [4], COST action 804
[5] , the GreenTouch consortium [6] and the CANARIE funded
GreenStar Network [7] which also has European members.

III. ENERGY SAVING STRATEGIES

When it comes to solutions to save power in carrier
networks, different strategies are possible. On the highest
level one can investigate if optimizations are possible in the
network topology. Currently, networks are designed to handle
peak loads. This means that when the loads are lower an
overcapacity is present in the network. At night time the traffic
load can be 25% to 50% of the load during day time. This
lower load could allow a more simplified network topology
at night which in turn allows certain links to be switched off.
Additionally, the switching off of these links allows for line
cards to be switched off and thus leads to reduced node power
consumption. An example which implements this principle is
multilayer traffic engineering. The MLTE (Fig. 1 [8]) approach
can lead to power savings of 50% during low load periods.

Fig. 1. Multilayer Traffing Engineering (MLTE)

The Openflow architecture allows us to implement MLTE
operations as an application in the Openflow controller. In
order to have the maximum benefit, the controller should be
able to power up/down parts of the switch on demand, as a
function of the energy-efficient algorithms in the application.
Openflow currently has limited support for the control of
power management in the switches. For enabling efficient
power management, we should allow the burst and adaptive
link modes in the switches and advertise them to the controller.
On the controller side, it should be extended to allow control of
such energy efficient features. Since the Openflow architecture
removes the control software part from the switches and
moves it to a central location, we could expect a reduction
in power consumption in the switches at the cost of the power
consumption of the controller.

Since access networks are organized in tree structures,
shutting down links is not a feasible option, which means
dynamic topology optimization cannot be applied in an access
network. On a given topology further optimizations can be
achieved by using adaptive link rates and burst mode operation
[9]. Adaptive link rate is based on the principle that lower
link rates lead to lower power consumption in the network
equipment. By estimating the average link rate required on
a line and adapting the link rate to this level power saving
becomes possible. Another possibility is burst mode operation
where packets are buffered in a network node and then sent
over the link at the maximal rate. In between the bursts the line
can be powered down. These strategies can be mainly useful in
access networks due to the burstiness of the traffic. However,
the difference in power consumption between different link
rates is mainly manifested at the higher bit rates. Secondly,
burst mode operation works on very small time scales so
the number of components which can be switched off is
limited. Finally, both approaches require larger packet buffers
which also need powering. Hence it is yet unclear whether the
strategies in reality can lead to significant power optimization.

Fig. 2. Power management

To enable energy efficient networking applications to run
on the Openflow controller, some extra messages should be
added to the Openflow specification which not only indicate
the status of a port on the switch, but also allows us to control
the individual ports.

The following features should be controllable: port
power up/down, burst mode, adaptive line rate. First
of all the controller needs to be aware of the capa-
bilities of the switch. So we would add the energy-
efficiency features to the OFPT FEATURES REQUEST and
OFPT FEATURES REPLY messages. In order to control
the functionality, we need some extra protocol messages.
These can be done by adding the capabilities to the
OFPT PORT MOD message. All these messages can use
the ofp port structure to advertise features and to change
them as required. Currently the ofp port structure has a bit
OFPPC PORT DOWN in the config field, which indicates
whether a port is administratively down. This can also be
used to power on/off a specific port on the switch using the
OFPT PORT MOD message. We can implement adaptive line



rate using the curr speed and max speed fields. For the other
features, it has to be investigated where they must be added
to the ofp port structure in the config field, the features field
and/or the advertised fields. We would also need to add the
OFPC BURST MODE.

Fig. 3. Energy consumption of a core router [10]

Consolidation of the control software and hardware outside
of the switches means a reduction in switch power consump-
tion offset by the power consumption of a new element, the
controller. As we can see from Fig. 3, most of the power
consumption stems from the Forwarding Engine (32%) and
the Cooling/Power Suply (35%). Only a small fraction (11%)
of the power is consumed by the control plane, of which
only 5% in the routing engine [11]. Openflow allows us to
reduce this part by moving the routing tables (RIB)/routing
engine and control plane functionality to the controller and
keeping only the forwarding engine (FIB) in the switch with a
smaller Openflow software component and extra hardware for
performing communication with the controller. The controller
will consume more power due to power supply inefficiency
than the reduction in power in the switches, so we think
the general Openflow architecture will be similar in power
consumption compared to conventional network architectures.

IV. DATA PLANE RESILIENCY

Carrier grade networks should be able to detect and recover
from incidents without impacting users. Hence a requirement
is added in the carrier grade network so that it should recover
from failure within 50 ms sub interval [12]. Resilience mech-
anisms [13] can be classified as restoration and protection.
In case of protection, the paths are preplanned and reserved
before a failure occurs. When a failure occurs, no additional
signaling is needed to establish the protection path. In case
of restoration, the recovery paths can be either preplanned
or dynamically allocated, but resources are not reserved until
failure occurs. When a failure occurs additional signaling
is needed to establish the restoration path. Protection is a
proactive strategy while restoration is a reactive strategy.

Data plane recovery in Openflow networks can be done
in two essentially different ways. One is to support the
recovery mechanisms of a specific implemented protocol into
an Openflow application. An example is supporting MPLS-TE
[14] [15] which has restoration functionality in its own control

plane. The other approach is to build resilience into Openflow,
supporting the recovery of arbitrary flows, regardless of the
type of traffic they are carrying. This is the option we explore
in this section.

A. Data plane restoration

Fast flow restoration in the Openflow data network requires
an immediate action of the controller after notification of
a link status change event thrown by the Openflow switch
detecting the failure. The recovery is performed by removing
the incorrect flow entries and installing new entries in all
affected Openflow switches as fast as possible following the
notification of the link failure. We use the following algorithm
to restore traffic: after the controller gets notification of a link
failure, a list is made of all affected paths. For all these affected
paths, a restoration path is calculated using a shortest path
algorithm on the remaining topology. For affected switches
which are on both the working and the restoration path, the
flow entry is modified. For the other switches, there are 2
possibilities. If the switches are only on the failed path, the
entries are delete. If they are only on the restoration path, new
entries are added.

B. Data plane protection

In order to further reduce packet loss resulting from restora-
tion actions in an Openflow network, we can turn to protection.
Protection removes the need of the Openflow switches to con-
tact the controller for the deletion, modification and addition
operations required to to establishment the restoration path.
This is accomplished by precomputing the protection path
and establishing it together with the original (i.e. working)
path. This means adding the flow entries for the protection
path in the switches. Advantages of this are faster recovery,
but the disadvantage is a larger Flowtable, which increases
costs (expensive TCAM equipment) and may slightly impede
forwarding performance.

Path protection requires end-to-end monitoring of the path
to enable the quick switchover. The recovery mechanism
depends on Bidirectional Forwarding Detection (BFD) session
to declare the fault in path. BFD is a network protocol used to
detect faults between two end-points. It provides low-overhead
detection of faults even on physical media that don’t support
failure detection of any kind, such as Ethernet, virtual circuits,
tunnels and MPLS Label Switched Paths.

V. CONTROL PLANE RESILIENCY

Because Openflow is a centralized architecture, relying on
the controller to take action when a new flow is introduced in
the network, reliability of the control plane is of very high
importance. The controller should also be resilient against
targeted attacks. There are multiple options for control plane
resiliency. One can provide two controllers, each in a separate
control network and when connection to one controller is
lost, the switch switches over to the backup network. This
is a very expensive solution. Another option is to try to
restore the connection to the controller by routing the control



traffic over the data network. When a switch loses connection
to the Openflow controller, it sends its control traffic to
a neighboring switch, which will require the controller to
detect such messages and establish flow entries for routing
the control traffic through this neighbour switch. This through-
the-data-plane solution is an intermediate step towards full in-
band control. An effective scheme for carrier grade networks
may be to implement out-of-band control in the failure free
scenario, switching to in-band control for switches who lose
the controller connection after a failure. In-band control is
supported in the Openflow specification.

VI. CASE STUDY: RESTORATION IN A NATIONWIDE
TOPOLOGY

BREMEN

HAMBURG

BERLIN

LEIPZIG

NURNBERG

MUNCHEN
ULM

STUTTGART

FRANKFURT

HANNOVER

DORTMUND
ESSEN

DUSSELDORF

KOLN

NOX

Fig. 4. German backbone network topology

In this section we evaluate flow restoration in Openflow
networks. The topology of the experiment is depicted in Fig.
4. It contains 14 nodes and 21 links.

We emulated this topology on our iLab.t Virtual Wall
testbed. The iLab.t Virtual Wall facility is a generic test
environment for advanced network, distributed software and
service evaluation, based on emulab [16]. The virtual wall
facilities consist of 100 (linux) nodes (dual processor, dual
core servers, 6x1 Gb/s interfaces per node) interconnected via
a non-blocking 1.5 Tb/s VLAN Ethernet switch, and connected
to a display wall (20 monitors) for experiment visualization.
Each node is connected with 4 or 6 Gigabit Ethernet links to
the switch.

Each of the 14 Openflow nodes is connected to a server
node (not shown) and also has a dedicated interface to a
switched ethernet LAN which establishes connection to the
NOX controller (i.e. out-of-band control). All links are 1Gb
Ethernet links. We implemented the restoration algorithm in
the NOX Openflow controller [17]. Switches are running Open
vSwitch [18]. To evaluate the restoration time, we generate

packets using the linux kernel module pktgen with 3 ms
intervals. In total there are 182 flows in the network. We also
loop traffic from each server through its connected switch
to verify pktgen generation consistency. All server nodes
have manually configured routing tables which send all traffic
through the interface connected to the Openflow network.

Fig. 5. Traffic received at NOX

We will use the incoming traffic intensity at the NOX
controller as captured using tcpdump to illustrate the experi-
ment setup. This is shown in Fig. 5. At the beginning of the
experiment, the Openflow switches connect to the controller
which generate the low spikes in the first seconds of the
experiment. Then we start sending the pktgen traffic, waiting
one second between each server to allow the NOX to install
the flow entries. These are the 14 large spikes 9 s to 23 s in
the experiment. The number of packets depends on the path
lengths as each switch requests flow entries to the controller.
The one second interval is to make sure we don’t accidentally
overload the NOX by trying to establish too many flows in
a short timespan. After the flows are installed, we see small
spikes at 5s intervals. These are ECHO REQUEST messages
which are sent to check liveness of the controller link. At
roughly 44.5 s into the experiment we break the link Berlin-
Hamburg by giving an eth down command in the Berlin
switch, which will trigger a PORT STATUS message sent to
the controller when the Berlin switch detects its Ethernet port
is down. At this point, the controller starts recovery (large
spike at around 44.5 s) and all traffic is restored.

Fig. 6 shows traffic on the link Berlin-Hamburg as captured
in Hamburg. Capturing with tcpdump started roughly 8 sec-
onds into the experiment. We show both the total traffic on the
link, as the (unidirectional) traffic from Berlin to Hamburg. At
the start we see a stepwise increase in traffic as each pktgen is
started on each node. The large step at approximately 15 s is
when the server at Hamburg starts sending traffic to all other
clients. By 23 s all traffic is set up in the network. Each flow
is roughly 300 packets per second, total traffic on the link is
around 6000 packets per second. At around 44.5 s, the link is
broken and all traffic on the link is lost.

Fig. 7 shows the traffic on the link Bremen-Hamburg. After
the link Berlin-Hamburg is taken down, this is the only link



Fig. 6. Traffic on affected link

Fig. 7. Traffic on restoration link

connecting Hamburg, so all traffic from and towards Hamburg
must now follow this link. Before the link failure, no traffic
from Berlin to Hamburg is on this link. At the time of the link
failure, we see a small drop in total traffic on the link. This is
the traffic which was coming from the link Berlin-Hamburg
over Hamburg-Bremen which is now lost. The restoration
on the controller reroutes the affected traffic, and we see an
increase in the traffic on this link. After restoration, the link
serves all traffic to Hamburg, so it also contains the traffic
from Berlin.

Fig. 8 shows the traffic from the viewpoint of the
client/server at Hamburg. After the initial setup of the pktgen
in all servers, the traffic is stable until the link failure at 44.5
s. Hamburg sees a drop in received traffic as some flows are
lost until the controller restores the traffic. The traffic flow
from Berlin shows that its traffic is completely lost over a
short interval, inspection of the tcpdump traces shows this to
be 289.75 ms.

Fig. 9 shows a detail of the outgoing traffic from the
NOX controller during the recovery phase, captured in 1 ms
intervals. At approximately 44.498 s, NOX starts sending the
FLOW MOD (modify/delete/add) messages required to install
the new Flow entries in the affected switches. The tcpdump
trace shows that in total 118 FLOW MOD messages are sent

Fig. 8. Traffic at Hamburg

Fig. 9. NOX outbound traffic during recovery

to restore 19 affected flows in 102 ms, including the path
calculation times. The 3 (last) packets in the graph at times
45.61 − 45.63 s are TCP ACK messages and need not be
included, recovery is finised at time 45.6 s.

Fig. 10. Restoration times

We did this experiment for a number of link failures in
the given experimental topology. The results are depicted in
Fig. 10. The x-axis shows the broken link, the y-axis shows,
in milliseconds, the minimum restoration time (or the time it



took to restore one connection), the maximum restoration time
(or the time it took to restore all connections) and the average
restoration time (the expected time for any flow to be restored
after a failure). The links are ordered from left to right in the
number of flows that are affected if this link fails, shown in
brackets in the axis labels.

The figure shows that the first flows are restored roughly
180 ms after the failure, while total recovery takes anywhere
between 260 and 310 ms. Also, there seems to be only minor
dependence on the number of flows which had to be restored.
In fact, recovery time will depend on the number of flows to
be restored, the average path length of each flow, the average
path length of the restoration paths and the average number of
nodes which are on both the working and the restoration path.
Furthermore, there are some unknown random factors, such
as momentary load of the NOX cpu and traffic bursts in the
control network. Such factors make drawing conclusions from
a single experiment difficult. Therefore we will perform more
experiments to allow statistical analysis, which will allow us
to see how the recovery time scales with the number of flows
to be restored.

The recovery times in Fig. 10 are substantially longer than
the 100 to 105 milliseconds it takes for the NOX to calculate
the new paths and send out the FLOW MODS to the switches.
Actually, the tcpdump traces show that the first paths are
restored within 1 to 6 ms after the NOX starts sending the
correct flow entries. The reason for the difference in delay
is the failure detection time, i.e. the time it takes the linux
kernel to detect/declare that the ethernet link is down after
the ”eth down” command effectively took the interface down.
This seems to be roughly 170 ms in our experiments. So a
significant part of the recovery time in Fig. 10 is currently in
detecting the failure. However, and this is an important point,
even with instant detection, while the recovery of a single flow
would take on the order of 10 - 20 milliseconds [19], to recover
all flows in the network would take at least the time needed
by NOX to perform all recovery actions. For our experiments
this was roughly 80− 130 ms. In carrier grade networks, the
number of flows to restore will be orders of magnitude higher,
requiring many more flows to be restored, which will severely
stress the control network and controller hardware for the short
timespan of recovery. In normal operation, the control network
load is generally orders of magnitude lower. Implementing a
high speed control network only for restoration will probably
not make sense. Implementing protection mechanisms in the
switches will be more cost-efficient, slightly increasing the
bandwidth requirement at flow setup time due to extra protec-
tion information to be sent to the switch, but highly decreasing
the bandwidth requirements during failures by allowing the
switch to perform the protection switching without controller
interference.

VII. CONCLUSIONS AND FUTURE WORK

We have presented two aspects of carrier grade networks
which can be met by Openflow, being improved scalability
by reducing the energy consumption and performing recovery

in case of network failures. While the Openflow architecture
may not be able to significantly reduce energy consumption
by consolidating the control hardware/software in a single
machine, it shows significant promise by facilitating network-
wide energy efficiency solutions such as MLTE in combination
with local power saving options such as controlled adaptive
line rates in the Openflow switches. Second, we give an
indication how Openflow can handle both data plane and
control plane failures. We have implemented a flow restoration
scheme in an open source controller (NOX) and ran extensive
experiments in an emulated carrier grade topology. We show
that Openflow can restore traffic, but its dependency on a
centralized controller means that it will be hard to achieve
50 ms restoration in large networks.

In future work, we will implement flow protection to be
able to recover under 50 ms. Also we will experiment with
hybrid in-band and out-band control for dealing with failures
in the controller network.
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