
A Mechanistic Performance Model for Superscalar In-Order Processors

Maximilien Breughe Stijn Eyerman Lieven Eeckhout
ELIS Department, Ghent University, Belgium

Abstract

Mechanistic processor performance modeling builds an
analytical model from understanding the underlying mech-
anisms in the processor and provides fundamental insight
in program-microarchitecture interactions, as well as mi-
croarchitecture structure scaling trends and interactions.
Whereas prior work in mechanistic performance modeling
focused on superscalar out-of-order processors, this paper
presents a mechanistic performance model for superscalar
in-order processors. We find mechanistic modeling for in-
order processors to be more challenging compared to out-
of-order processors because the latter are designed to hide
latencies, and hence from a modeling perspective, detailed
modeling of instruction execution latencies and dependen-
cies is not required.

The proposed mechanistic performance model for super-
scalar in-order processors models the impact of non-unit
instruction execution latencies, inter-instruction dependen-
cies, cache/TLB misses and branch mispredictions, and
achieves an average performance prediction error of 2.5%
compared to detailed cycle-accurate simulation. We exten-
sively evaluate the model’s accuracy and we demonstrate its
usefulness through three applications: (i) we compare in-
order versus out-of-order performance, (ii) we quantify the
impact of compiler optimizations on in-order performance,
and (iii) we perform a power/performance design space ex-
ploration.

1 Introduction

For studying processor performance, both researchers
and designers rely heavily on detailed cycle-accurate sim-
ulation. Although detailed simulation provides accurate
performance projections of particular design configurations,
deriving fundamental insight into the interactions that take
place within a processor is more complicated. Under-
standing trend behavior of microarchitecture structure scal-
ing, the interactions among microarchitecture structures as
well as how the microarchitecture interacts with its work-
loads, requires a very large number of simulations. The
slow speed of detailed cycle-accurate simulation makes it a
poor fit to understand these fundamental microarchitecture-

application interactions. This is particularly a concern dur-
ing the early stages of the design cycle when high-level de-
sign decisions need to be made. Detailed cycle-accurate
simulation is too time-consuming in the early design stages
and, in addition, highly accurate performance estimates are
illusory anyway given the knowable level of design detail.

In this paper, we focus on mechanistic analytical per-
formance modeling, which is a better method for gaining
insight and guiding high-level design decisions. Mecha-
nistic modeling is derived from the actual mechanisms in
the processor. A mechanistic model has the advantage of
directly displaying the performance effects of individual
mechanisms, expressed in terms of program characteristics
(such as instruction mix and inter-instruction dependency
profiles), machine parameters (such as processor width,
number of functional units, pipeline depth), and program-
machine interaction characteristics such as cache miss rates
and branch misprediction rates. Mechanistic modeling is
in contrast to the more common empirical models which
use machine learning techniques and/or statistical methods,
e.g., neural networks, regression, etc., to infer a perfor-
mance model [4, 13, 14, 15, 19, 26]. Empirical modeling
involves running a large number of detailed cycle-accurate
simulations to infer or fit a performance model. In con-
trast, mechanistic modeling builds a model from the internal
structure of the processor and does not require simulation to
infer or fit the model.

Whereas prior work in analytical performance modeling
has focused on superscalar out-of-order processors [8, 17],
in this paper we propose a mechanistic model for super-
scalar in-order processors. Counterintuitively perhaps, in-
order processor performance is more complicated to model
than out-of-order processor performance using a mechanis-
tic model. The reason is that out-of-order processors are de-
signed to hide instruction execution latencies and dependen-
cies which means that these phenomena are not so impor-
tant from a modeling perspective, i.e., one can assume that
latencies and dependencies are largely hidden and hence do
not need to be modeled. An in-order processor, on the other
hand, cannot hide these phenomena, and instruction exe-
cution latencies and dependencies immediately translate in
a performance impact. As a result, in-order processors re-
quire more extensive modeling.

Interval analysis, which is a mechanistic model for su-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55824051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IPC

t

I-cache miss D-cache missbranch misprediction

IPC

t

I-cache miss D-cache missbranch misprediction

stall on dependency

stall on long-latency instruction

(a) Interval modeling of superscalar out-of-order processor performance

(b) Interval modeling of superscalar in-order processor performance

less-than-ideal steady-state behavior
due to dependencies and/or non-unit

execution latency instructions

interval

Figure 1: Interval analysis analyzes processor performance
on an interval basis determined by disruptive miss events:
(a) out-of-order processors and (b) in-order processors.

perscalar out-of-order processors [8, 17], was based on the
observation that in the absence of miss events such as cache
misses and branch mispredictions, a well-balanced super-
scalar out-of-order processor can smoothly stream instruc-
tions through its pipelines, buffers and functional units. Un-
der ideal conditions the processor sustains a level of perfor-
mance (instructions per cycle) roughly equal to the width of
the processor. However, the smooth streaming of instruc-
tions is intermittently disrupted by miss events. The effects
of these miss events divide execution time into intervals,
and these intervals serve as the entity for analysis and mod-
eling, see Figure 1(a).

The fundamental assumption made for modeling super-
scalar out-of-order processors, namely that the processor
can smoothly stream instructions through its pipelines at
roughly the designed width, does not hold true for in-order
processors. Moreover, for superscalar out-of-order proces-
sors, it suffices to model a limited number of miss events
only, such as long-latency cache misses (typically last-level
cache misses only due to data references), instruction cache
misses, TLB misses, and branch mispredictions. In-order
processors on the other hand, incur a wider range of miss
events and other performance hazards. Beyond the ones
mentioned above, in-order processor performance also suf-
fers from pipeline stalls due to inter-instruction dependen-
cies, long-latency instructions, such as multiply and divide
operations, and cache misses in first-level cache(s). (An
out-of-order processor is designed such that these latencies

and inter-instruction dependencies are mostly hidden.) As a
result, inter-instruction dependencies and non-unit instruc-
tion execution latencies may introduce additional intervals
and in addition may lead to a pipeline throughput that is less
than the designed width in the absence of miss events, see
Figure 1(b). The mechanistic model proposed in this pa-
per models these phenomena using program statistics, such
as instruction mix and inter-instruction dependency profiles,
that are independent of the underlying machine. Hence, the
mechanistic model requires the workload to be profiled only
once, which suffices to explore a large part of the super-
scalar in-order processor design space.

Our experimental results using the M5 simulator and
the MiBench benchmarks show the high level of accuracy
achieved by the mechanistic model. We report an average
absolute prediction error of 2.5%. Further, we demonstrate
the usefulness of the model through three case studies. We
analyze and compare in-order versus out-of-order proces-
sor performance and we pinpoint where the performance
differences come from using CPI stacks. Second, we evalu-
ate how compiler optimizations affect in-order performance
and we derive interesting conclusions. Third, we use the an-
alytical model to drive a power/performance design space
exploration.

We believe this work is timely given that energy and
power-efficiency are primary design concerns in contem-
porary computer system design. Whereas the focus is on
extending battery lifetime in embedded systems, improving
energy and power-efficiency has important implications on
cooling and total cost of ownership of server and datacen-
ter infrastructures. In-order processors are less complex,
consume less power and incur less chip area, compared to
out-of-order processors, which makes them an attractive de-
sign point for specific application domains. In particular,
in-order processors are commonly used in the mobile space,
ranging from cell phones, to tablets and netbooks; example
processors are Intel Atom and ARM Cortex-A8. For server
throughput computing, integrating many in-order proces-
sor cores on a single chip maximizes total chip throughput
within a given power budget. Commercial examples include
Sun Niagara [18] and SeaMicro’s Intel Atom based server1;
recent research projects have also studied in-order proces-
sors for internet-sector workloads [1, 21, 27].

2 Modeling Context

Before describing the proposed model in great detail, we
first set the context within which we built the model. We
present a general overview of the modeling framework, as
well as a description of the assumed superscalar in-order
processor architecture.

instruction mix
& dependency

profiling

program
binary

mechanistic
model

machine parameters

performance
predictionprogram

statistics
cache profiling

branch
profiling

Figure 2: Overview of the mechanistic modeling frame-
work.

2.1 General overview

The framework for the mechanistic model is illustrated
in Figure 2: it requires a profiling run to capture a number of
statistics that are specific to the program only and that are
independent of the machine. These statistics relate to the
program’s instruction mix and inter-instruction dependen-
cies, and need to be collected only once for each program
binary.

The profiling run also needs to collect a number of mixed
program-machine statistics, i.e., statistics that are a function
of both the program binary as well as the machine. Example
statistics are cache and TLB miss rates, and branch mispre-
diction rates. Although, in theory, collecting these statistics
requires separate runs for each cache, TLB and branch pre-
dictor configuration of interest, in practice though, most of
these statistics can be collected in a single run. In particular,
single-pass cache simulation [12, 22] allows for computing
cache miss rates for a range of cache sizes and configura-
tions in a single run. We also collect branch misprediction
rates for multiple branch predictors in a single run. Once
these statistics are collected, performance can be predicted
for any combination of cache hierarchy with any branch
predictor and any processor core configuration.

These statistics, along with a number of machine param-
eters then serve as input to the analytical model, which then
estimates superscalar in-order processor performance. The
machine parameters include pipeline depth, pipeline width,
functional unit latency (multiply, divide, etc.), cache ac-
cess latencies, and memory access latencies; further, the
cache/TLB and branch predictor size and configuration of
interest is to be selected.

Because the analytical model basically involves comput-
ing a limited number of formulas, a performance prediction
is obtained instantaneously. In other words, once the initial
profiling is done, the analytical model allows for predicting
performance for a very large design space in the order of
seconds or minutes at most.

1http://www.seamicro.com/

2.2 Microarchitecture description

We assume a superscalar in-order processor with five
pipeline stages: fetch, decode, execute, memory and write-
back. (The model can handle deeper pipelines, as we will
describe later.) Fetch and decode are referred to as the front-
end stages of the pipeline, whereas execute, memory and
write-back are back-end stages. Each stage is W -wide, i.e.,
each stage can hold W instructions, with W being the width
of the processor. We assume forwarding logic such that
dependent instructions can execute back-to-back in subse-
quent cycles. Further, we assume stall-on-use, i.e., the pro-
cessor stalls on an instruction that consumes a value that
has not been produced yet. These instructions block up the
decode stage. A load that results in a cache miss blocks up
the memory stage. Finally, we assume in-order commit to
enable precise interrupts. This implies that instructions that
take more than one cycle to execute (e.g., a multiply in the
execute stage or a cache miss in the memory stage) block
all subsequent instructions.

3 Mechanistic Performance Model

3.1 Overall formula

The overall formula for estimating the total number of
execution cycles T of an application on a superscalar in-
order processor is as follows:

T =
N

W
+ Pmisses + PLL + Pdeps. (1)

In this equation, N , W , Pmisses, PLL, Pdeps stand for the
number of dynamically executed instructions, the width of
the processor, the penalty due to miss events, the penalty
due to non-unit, long-latency instructions (multiply and di-
vide), and the penalty due to inter-instruction dependencies,
respectively. Table 1 summarizes the inputs to the model.
How we estimate penalty cycles due to misses, long-latency
instructions and dependencies from these model inputs will
be explained in the following sections.

The intuition behind the mechanistic model is that the
minimum execution time for an application equals the num-
ber of dynamically executed instructions divided by proces-
sor width, i.e., it takes at least N/W cycles to execute N
instructions on a W -wide processor. Miss events, non-unit
long-latency instructions and inter-instruction dependencies
prevent the processor from executing instructions at a rate
of W instructions per cycles, which is accounted for by the
model by adding penalty cycles. We make a distinction be-
tween penalty cycles due to miss events, non-unit latency
instructions and inter-instruction dependencies. Before de-
scribing how we account for each of these penalties we first
explain the general principle employed for penalty account-
ing.

Program characteristics
N no. dynamically executed instructions
Ni no. dynamically executed instructions of type i with i the different types of non-unit, long-latency instructions
missesi no. misses of type i with i the different types of miss events (L1/L2 cache/TLB misses, branch mispredictions)
depsunit(d) no. instructions dependent on unit-latency instruction at dependency distance d
depsLL(d) no. instructions dependent on long-latency instruction (excl. loads) at dependency distance d
depsld(d) no. instructions dependent on loads at dependency distance d

Machine characteristics
W processor width
D depth of the front-end pipeline
latencyLL,i execution latency for non-unit long-latency instruction of type i with i multiply, divide, L1, L2 hit, etc.
MissLatencyi cache miss latency of type i with i L1, L2, etc.

Table 1: Mechanistic model inputs.

3.2 Penalty cycle accounting

To compute the number of penalty cycles, we examine
the number of instructions that enter the execute stage in
the in-order pipeline. If this number equals W , then we are
in the ideal case, and no penalty cycles are accounted for. If
this number is less than W , we differ from the ideal case,
and penalty cycles should be accounted to the event that
caused the reduction in the number of instructions executed.

If no instructions enter the execute stage (e.g., an in-
struction cache miss ceases the flow of instructions into the
pipeline for a number of cycles), the cycle is accounted as
a penalty cycle. However, it can be the case that some in-
structions in the decode stage are able to execute, but the
other ones cannot be executed due to a dependency hazard.
In this case x instructions are shifted to the execution stage,
with 0 < x < W . This cycle is not a full-penalty cycle,
because some instructions execute; on the other hand, this
cycle is not ideal either, because less than W instructions
are executed. To handle this situation, we use the notion of
an instruction slot, and we convert instruction slots back to
penalty cycles. Each stage has W instruction slots, and each
instruction slot represents 1/W of the width of that stage. If
W instructions execute, W instruction slots are fully occu-
pied and hence we have one (W × 1/W = 1) useful cycle
and no penalty cycle. If no instructions executed, we get
0 × 1/W = 0 useful cycles and 1 penalty cycle. If x in-
structions execute, x instruction slots are occupied, hence
the fraction of useful cycles equals x/W , and thus the num-
ber of penalty cycles equals (W − x)/W . This means that
the fraction of penalty in one cycle is a real number between
zero and one (in multiples of 1/W), reflecting the fraction
of unused instruction slots.

In the next few sections, we discuss the different events
that incur a penalty (miss events, long-latency instructions
and inter-instruction dependencies), and we explain how we
compute their respective penalties.

3.3 Penalty due to miss events
We determine the penalty due to miss events using the

following formula:

Pmisses =
∑

i∈{missEvents}

missesi × penaltyi. (2)

This formula computes the weighted sum over the miss
events with their respective penalties.

We make a distinction between cache (and TLB) misses
versus branch mispredictions when it comes to computing
the penalties. We treat instruction and data cache misses
(and TLB misses) the same way, since they both block
off the execution stage while the miss is being handled by
the memory subsystem. In particular, when an instruction
cache miss occurs, the instructions in the front-end pipeline
can still enter the execution stage, but when the instruction
cache miss is resolved, it takes some time for the new in-
structions to re-fill the front-end pipeline. It is easy to un-
derstand that front-end pipeline drain and re-fill offset each
other, i.e., the penalty for an instruction cache miss is inde-
pendent of the front-end pipeline depth. In case of a data
cache miss, the memory stage blocks, and no instructions
can leave or enter the execution stage while the data cache
miss is resolved.

From the above discussion, it follows that the penalty for
a cache miss is proportional to its miss latency (i.e., the ac-
cess time to the next level of cache or main memory). How-
ever, when a cache miss occurs, it might be the case that
some instructions can still be executed. For example, for an
instruction cache miss and a processor with width W = 4, it
may happen that one, two or three instructions were already
fetched before the instruction cache miss occurred. These
instructions can execute underneath the cache miss, and are
therefore hidden. Assuming that cache misses occur uni-
formly distributed across a W -wide instruction group, the
average number of instructions hidden underneath a cache
miss equals W−1

2 . The cache miss penalty should therefore
be reduced by W−1

2W cycles. The total penalty for a cache or
TLB miss thus equals

penaltycacheMiss = MissLatency − W − 1

2W
. (3)

Branch mispredictions are slightly different. Upon a
branch misprediction, all the instructions fetched after the
mispredicted branch need to be flushed. In particular, when
a branch misprediction is detected in the execution stage, all
the instructions in the front-end pipeline as well as the in-
structions fetched after the branch in the execute stage need
to be flushed. Hence, the penalty of a branch misprediction
equals:

penaltybranchMiss = D +
W − 1

2W
, (4)

with D the depth of the front-end pipeline. The first term
is the number of cycles lost due to flushing the front-end
pipeline; there are as many cycles lost as there are front-end
pipeline stages, namely D. The second term is the penalty
of flushing instructions in the execute stage; this number
ranges between 0 and W − 1; we again assume a uniform
distribution.

Correctly predicted branches may also introduce a per-
formance penalty. In a pipeline in which a branch is pre-
dicted one cycle after it was fetched, and if it is predicted
taken, the instruction(s) in the fetch stage (which were
fetched assuming a non-taken branch) need to be flushed.
This incurs one penalty cycle per branch that is predicted
taken, even if it is correctly predicted. We will refer to this
penalty as the taken-branch hit penalty.

3.4 Penalty due to long-latency instructions

The penalty due to non-unit, long-latency instructions is
computed as follows:

PLL =
∑

i∈{LLType}

Ni × penaltyi. (5)

The penalty is computed as a weighted sum over the number
of non-unit instructions in the dynamic instruction stream,
with the weights being their respective penalty. Non-unit,
long-latency instructions include multiply and divide oper-
ations that take more than one cycle to execute on a func-
tional unit, as well as L1 cache hits (if the L1 access time
takes more than one cycle) and L2 cache hits due to loads.

Because in-order processors execute instructions in pro-
gram order and because we assume in-order commit to
guarantee precise interrupts, a long-latency instruction
causes all newer instructions to stall until the long-latency
instruction is executed. The penalty of a long-latency in-
struction thus equals

penaltyLL = (latencyLL − 1)− W − 1

2W
. (6)

The first term subtracts one from the instruction execution
latency because one cycle was accounted for already as part
of the minimum cycle count N/W , see formula 1. The sec-
ond term accounts for overlap effects of older instructions
prior to the long-latency instruction in the execution stage.

3.5 Penalty due to dependencies

For computing the penalty due to inter-instruction de-
pendencies we consider three groups of dependencies: de-
pendencies on unit-latency producers, dependencies on
non-unit latency instructions (excluding loads), and depen-
dencies on load instructions:

Pdeps = Pdep unit + Pdep LL + Pdep ld (7)

3.5.1 Dependencies on unit-latency instructions

Unit-latency instructions that depend upon each other and
that are in different stages during the execution, do not in-
cur a performance penalty; the result produced by the unit-
latency instruction can be communicated to its consumer
through the register file or through forwarding logic. A de-
pendency on a unit-latency instruction only incurs a penalty
if both instructions reside in the same stage. We compute
the penalty due to inter-instruction dependencies on unit-
latency instructions using the following formula:

Pdep unit =

W−1∑
d=1

depsunit(d)

× Prob[in same stage](d)

× penalty(d)

(8)

In this equation, d is defined as the dependency distance
between the consumer and the producer, and is counted as
the number of dynamically executed instructions between
the producer and its consumer; subsequent instructions in
the dynamic instruction stream that depend upon each other
have a dependency distance d = 1. The dependency dis-
tance d accounts for the shortest dependency distance if a
consumer instruction has two producers. This formula sums
over d from 1 to W −1, and consists of three parts. The first
part depsunit(d) is the number of dependent instructions on
unit-latency instructions at distance d (see Table 1). The
second part estimates the probability for a producer and a
consumer to be in the same stage — again, we assume a
uniform distribution:

Prob[in same stage](d) =
W − d

W
. (9)

The third part quantifies the penalty in case the consumer
and producer are in the same stage and is computed based
on the number of lost instruction slots of the consumer and
all instructions beyond the consumer. The distance between
the producer and the consumer is defined as d, hence there
are d older instructions than the consumer in the pipeline
stage. This means there are W − d instructions that cannot
execute due to the dependency. The penalty therefore equals

penalty(d) =
W − d

W
(10)

Substituting formulae 9 and 10 into formula 8 yields:

Pdep unit =

W−1∑
d=1

depsunit(d) ·
(
W − d

W

)2

. (11)

3.5.2 Dependencies on long-latency instructions

Long-latency instructions, such as multiply and divide op-
erations — we treat load instructions separately as we will
discuss in the next section — block the execute stage for
more than one cycle, which means that they will always
be the oldest instruction in the execution stage by the end
of their execution. Therefore, an instruction that depends
on this long-latency instruction and whose dependency dis-
tance is less than W will eventually wait in the decode stage.
This instruction and the newer instructions cannot proceed
to the next stage in the next cycle, and will thus incur a
penalty. The number of lost instruction slots is again W−d,
as in the previous section. The total penalty for instructions
that depend on long-latency instructions thus equals

Pdep LL =

W−1∑
d=1

depsLL(d)×
W − d

W
, (12)

with depsLL(d) the number of instructions that depend on
a long-latency instruction at dependency distance d.

3.5.3 Dependencies on load instructions

Dependencies on load instructions are different because
loads produce their result in the memory stage, not in the
execute stage. This implies that instructions that depend
on load instructions not only cause a penalty when they are
together in the decode stage, but also when the dependent
instruction is in the decode stage and the load is in the exe-
cute stage. The maximum dependency distance where there
can be a penalty is therefore 2W − 1 instead of W − 1 as
in the previous sections. We therefore make a distinction
between two cases: (i) the load and its consumer are in the
same stage; and (ii) the load and its consumer are in subse-
quent stages.

Consider first the case that both the load and its consumer
reside in the decode stage. In the next cycle, only the load
and its independent instructions will shift to the execution
stage. This incurs a penalty of W−d

W . The following cy-
cle, the load proceeds to the memory stage and no instruc-
tions enter the execution stage. This cycle is therefore a full
penalty cycle. If the load hits in the cache (and the cache hit
latency is one cycle), the dependent instruction enters the
execution stage in the next cycle. If it is a miss (or multi-
ple cycle hit), all instructions have to wait during the miss
(or hit) latency; this penalty is already accounted for as a
cache miss (or long-latency instruction), see Section 3.3. In
summary, the penalty in this case is

penalty = 1 +
W − d

W
=

2W − d

W
. (13)

This case occurs when the load and its consumer are to-
gether in the decode stage. The probability for this case to
happen equals (W − d)/W , as defined in formula 9.

Now consider the second case in which the consumer of
the load is in the decode stage while the load is in the exe-
cute stage. In the next cycle, the load moves to the memory
stage. The number of instructions that can enter the execute
stage depends on the dependency distance d. If d < W ,
then all independent instructions have shifted with the load
to the memory stage, and no instructions can enter the exe-
cute stage (the consumer is now the oldest instruction in the
decode stage), which means we have a full penalty cycle. If
W ≤ d < 2W , there are some instructions in the decode
stage that are older than the consumer, and they can shift to
the execute stage. This number of instructions equals d−W ,
so the penalty in this case equals W−(d−W)

W = 2W−d
W . In

summary, the penalty equals in this case

penalty =
1 if d < W

2W−d
W if W ≤ d < 2W

(14)

The probability for this case to happen is defined by the
probability that the load and its first dependent instruction
are in two consecutive stages; it is computed as follows:

Prob =
d
W if d < W

2W−d
W if W ≤ d < 2W

(15)

Putting it all together, the penalty due to inter-instruction
dependencies on loads equals

Pdep ld =

W−1∑
d=1

depsld(d)

(
W − d

W

2W − d

W
+

d

W

)

+

2W−1∑
d=W

depsld(d)

(
2W − d

W

)2

.

(16)

4 Experimental Setup

We use 19 benchmarks from the MiBench benchmark
suite [10]. MiBench is a suite of embedded bench-
marks from different application domains, including auto-
motive/industrial, consumer, office, network, security, and
telecom. We limit ourselves to 19 benchmarks in total in or-
der to limit simulation time during performance model val-
idation while covering the above application domains.We
consider the large input for all of these benchmarks.

We use the M5 simulation framework [2]. We derive
our profiler from M5’s functional simulator, and we vali-
date our model against detailed cycle-accurate simulation
with M5. We use McPAT [20] for our power estimates. The
inputs for McPAT are various processor configuration pa-
rameters, such as pipeline depth, width, cache configura-
tion, memory latency, chip technology (32nm), etc., along

Parameter Default Range
I-cache 32KB 32KB

4 way set-assoc 4 way set-assoc
64 byte blocks 64 byte blocks

D-cache 32 KB 32KB
4 way set-assoc 4 way set-assoc
64 byte blocks 64 byte blocks

L2-cache 512KB 128KB – 256KB –
512KB – 1MB

8 way set-assoc 8 vs 16 way set-assoc
10ns latency 10ns latency

pipeline depth 9 stages 5 – 7 – 9 stages
1GHz 600MHz – 800MHz – 1GHz

processor width 4 slots 1 – 2 – 3 – 4 slots
branch predictor 1KB global history 1KB global history –

3.5KB hybrid 10b local and
12b global history

Table 2: Architecture design space explored along with the
default processor configuration being simulated.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a
d

p
cm

_
c

a
d

p
cm

_
d

d
ij

k
st

ra

g
sm

_
c

jp
e

g
_

c

jp
e

g
_

d

la
m

e

p
a

tr
ic

ia

q
so

rt

rs
y

n
th

sh
a

st
ri

n
g

se
a

rc
h

su
sa

n
_

c

su
sa

n
_

e

su
sa

n
_

s

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e

r

ti
ff

m
e

d
ia

n

C
P
I

Mechanistic Model Detailed Simulation

Figure 3: Validation: CPI as predicted by the model against
CPI through detailed simulation for MiBench.

with program parameters, such as number of instructions,
instruction mix, etc., and finally, program-machine parame-
ters, such as cache misses, branch mispredictions, etc.

The default processor configuration is shown in Ta-
ble 2: a superscalar in-order processor with private 32KB
L1 caches and a unified L2 cache. Further, we also con-
sider a design space in which we vary a number of impor-
tant microarchitecture parameters, such as pipeline depth
and frequency setting (3 configurations), pipeline width (4
configurations), L2 cache size and associativity (8 configu-
rations), as well as branch predictor configuration (2 config-
urations). This leads to a design space consisting of 192 de-
sign points within which we will be evaluating the model’s
accuracy. Although this is not a very large space compared
to real design spaces, it was close to the limit we could ex-
plore given our infrastructure because we compare model
accuracy against detailed simulation results which are very
time-consuming and costly to obtain — which is the moti-
vation for this research in the first place.

5 Evaluation

The evaluation of the model is done in a number of steps.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
=

1

W
=

2

W
=

3

W
=

4

W
=

1

W
=

2

W
=

3

W
=

4

W
=

1

W
=

2

W
=

3

W
=

4

sha tiffdither dijkstra

C
P
I

dependencies

TLB miss

bpred hit (taken)

bpred miss

l2 miss

l2 access

mul/div

base

CPI Detailed

Figure 4: Model accuracy for estimating relative perfor-
mance as a function of superscalar width.

Default processor. We first evaluate the model’s accu-
racy for the default processor configuration, see Figure 3.
We show predicted CPI by the model against CPI obtained
through detailed simulation. The average CPI prediction er-
ror equals 3.1% while the highest error is 8.4%. The er-
ror mostly comes from second-order effects. The model
proposed in this paper essentially is a first-order model
and does not model overlap effects. For example, an I-
cache miss may be (partially) overlapped by the execution
of a long-latency instruction (e.g., multiply), yet the model
would account for both penalties. Also, the model does not
account for delayed update effects in the branch predictor.
We do not account for second-order effects deliberately in
order not to complicate the model too much. Moreover, our
results show that a first-order model is accurate enough.

Varying superscalar width. Figure 4 shows CPI stacks
as obtained through the model, as a function of super-
scalar width. The overall CPI obtained through detailed
simulation is also shown as a reference. The three bench-
marks were picked based on how they scale with proces-
sor width. The sha benchmark benefits the most from su-
perscalar processing, whereas dijkstra benefits the least;
tiffdither is somewhere in the middle. This graph in fact
demonstrates the amount of insight that mechanistic model-
ing offers beyond detailed simulation, because it breaks up
overall performance into its contributing factors. Clearly,
although there is a benefit from going from scalar process-
ing to 2-wide processing for dijkstra, going beyond 2-wide
processing does not improve performance much. The rea-
son why is immediately clear from the CPI stacks: although
the base component (N/W) decreases, its decrease is com-
pensated by more inter-instruction dependencies, which im-
pede the benchmark from benefiting from superscalar pro-
cessing. This is not the case for sha which seems to suf-
fer less from dependencies; apparently, this benchmark ex-
hibits more ILP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

C
u

m
u

la
ti

v
e

 p
ro

b
a

b
il

it
y

Absolute error

Figure 5: Cumulative distribution of model accuracy across
the design space.

0

1

2

3

4

5

6

7

8

9

10

C
P
I

Mechanistic Model Detailed Simulation

Figure 6: Validation: CPI as predicted by the model against
CPI through detailed simulation for SPEC CPU 2006.

Design space exploration. Figure 5 reports the cumula-
tive distribution of the model prediction error across the
broader design space. Again, this graph confirms our earlier
finding, namely the model is accurate compared to detailed
simulation: for 90% of the design points, we achieve a pre-
diction error below 6%. The average and maximum pre-
diction errors observed equal 2.5% and 9.6%, respectively.
Simulating the entire design space through detailed simu-
lation takes 290 days on a single computer. Exploring the
design space using the proposed mechanistic model on the
other hand takes only 4.5 hours — a speedup of 3 orders of
magnitude. Note that profiling accounts for the largest frac-
tion of the 4.5 hours, and calculating the model only takes a
few seconds.

SPEC CPU2006. For completeness and to increase our
confidence in the modeling, we also evaluated the model’s
accuracy using a number of SPEC CPU2006 benchmarks
which are more memory-intensive than the MiBench appli-
cations considered so far. We observe an average error of
4.1% and a maximum error of 10.7%, see Figure 6.

6 Applications

Having evaluated the model’s accuracy, we now consider
three case studies to illustrate the use of the model: (i) we

compare and analyze in-order versus out-of-order perfor-
mance; (ii) we evaluate how compiler optimizations affect
in-order performance; and (iii) we use the model to drive a
power/performance design space exploration.

6.1 In-order versus out-of-order performance

In our first application, we compare in-order versus out-
of-order performance using CPI stacks, see Figure 7 2; We
only show CPI stacks for a selected number of benchmarks
to improve readability. The in-order CPI stacks are obtained
using the model described in this paper; the out-of-order
CPI stacks are obtained using the model described in prior
work [8]. In this comparison, we consider four-wide in-
order and out-of-order processors. A number of fundamen-
tal and insightful observations can be made from this graph.

• Dependencies are largely hidden by out-of-order exe-
cution, in contrast to in-order processing. This is ap-
parent for all the benchmarks.

• Non-unit instruction execution latencies due to multi-
ply/divide operations have significant impact on per-
formance on in-order processors for some bench-
marks, the most notable example being tiff2bw. Non-
unit latencies are mostly hidden by out-of-order exe-
cution.

• The cost per mispredicted branch is larger on out-
of-order processors than on in-order processors, see
for example patricia. The reason is that on an in-
order processor, the cost equals the depth of the front-
end pipeline, whereas on an out-of-order processor the
branch resolution time (the time between the branch
being dispatched from the front-end pipeline into the
back-end) also contributes to the overall penalty in ad-
dition to the front-end pipeline.

• The L2 cache component is smaller on the out-of-order
processor compared to the in-order processor, see for
example tiff2rgba. The reason is that an out-of-order
processor can better exploit memory-level parallelism
and issue independent loads and stores to memory si-
multaneously. An in-order processor on the other hand
would stall on the first use of a load miss, preventing
subsequent (independent) load misses to go to mem-
ory.

• Since I-cache miss penalty is a function of the miss
latency only, the penalty is identical on in-order and
out-of-order processors.

2The CPI stacks were obtained by reimplementing the model in the
SimpleScalar toolset. The use of SimpleScalar, along with the use of
another cross compiler, is the reason for the slightly different results for
the in-order model compared with the results in the other sections. Sim-
pleScalar expects COFF binaries, unlike M5 which reads the ELF format.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

In
 O

rd
e

r

O
o

O

cjpeg dijkstra djpeg lame patricia susan_c susan_e susan_s tiff2bw tiff2rgba tiffdither tiffmedian toast

C
P
I

Dependencies

Bpred miss

DL2 miss

IL2 miss

DL1 miss

IL1 miss

Mul/Div

base

Figure 7: Comparing in-order versus out-of-order performance using CPI stacks obtained through mechanistic modeling.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

n
o

sc
h

e
d

O
3

u
n

ro
ll

n
o

sc
h

e
d

O
3

u
n

ro
ll

n
o

sc
h

e
d

O
3

u
n

ro
ll

n
o

sc
h

e
d

O
3

u
n

ro
ll

n
o

sc
h

e
d

O
3

u
n

ro
ll

gsm_c sha stringsearch susan_s tiffdither

N
o

rm
a

li
ze

d
 C

y
cl

e
s

dependencies

bpred hit

bpred miss

l2 miss

l2 access

mul/div

base

Figure 8: Normalized cycle stacks for five benchmarks
across different compiler optimizations.

This case study clearly illustrates the insight that can be
obtained from mechanistic analytical modeling, which is
much harder to obtain through detailed cycle-accurate sim-
ulation.

6.2 Compiler optimizations

As a second application we use the model to
study how compiler optimizations affect superscalar
in-order performance, see Figure 8. We consider
-O3, -O3 without instruction scheduling (-O3
-fno-schedule-insns), and -O3 with loop un-
rolling turned on (-O3 -funroll-loops) for the five
benchmarks for which we observed the largest impact due
to compiler optimizations. Figure 8 shows normalized
cycle stacks, i.e., a cycle stack is computed by multiplying
a CPI stack with the number of dynamically executed
instructions; the cycle stacks are then normalized to the
execution time with the -O3 optimization level. For most
of the benchmarks, instruction scheduling increases the
distance between dependent instructions, resulting in a
lower penalty due to dependencies. For some benchmarks,
e.g., gsm c, the base component increases slightly through
instruction scheduling, the reason being the addition of spill
code. However, the cost of spill code is compensated for by
the substantial decrease in the impact of inter-instruction
dependencies. For one benchmark, tiffdither, the cost of
spill code is not compensated for, and the penalty due to

inter-instruction dependencies is even worse.
Most of the benchmarks (and all the ones in Figure 8)

benefit from loop unrolling. Three components get an im-
portant reduction through loop unrolling. First, the number
of dynamic instructions decreases because fewer branches
and counter increments are needed after loop unrolling.
Second, because there are fewer branches, the penalty due
to taken branches also decreases. The third and biggest
contribution comes from the smaller penalty due to inter-
instruction dependencies; clearly, loop unrolling enables the
instruction scheduler to better schedule instructions so that
fewer inter-instruction dependencies have an impact on in-
order performance.

6.3 Design space exploration
Processor designers take various metrics into account

during the development process. Energy consumption
clearly is a key metric when designing embedded proces-
sors. We now explore the design space mentioned in Table 2
while considering both performance and energy consump-
tion. We therefore consider energy-delay product (EDP)
which is defined as the product of execution time and en-
ergy consumption.

We compare EDP obtained through detailed simulation
against the mechanistic model; we use McPAT, as men-
tioned before, for the power modeling. We show EDP
graphs for four benchmarks in Figure 9. We find that the
model reaches the same optimum processor configuration
for 12 of the 19 benchmarks as with detailed simulation; for
6 other benchmarks the model suggests a processor configu-
ration where the difference in EDP compared to the optimal
configuration is less than 0.5%. For one benchmark (ad-
pcm d), the model suggests a configuration that has an EDP
difference of less than 5% compared to the optimal config-
uration, see also Figure 9(a): detailed simulation identifies
the optimum width to be 3, whereas our model predicts it to
be 2.

7 Related work
We now describe prior work in analytical modeling, sta-

tistical modeling and program characterization that is most

0

0.1

0.2

0.3

0.4

E
D

P
 (

J*
s)

Configuration

Estimated EDP Detailed EDP

(a) adpcm d

0

2

4

6

8

10

E
D

P
 (

J*
s)

Configuration

Estimated EDP Detailed EDP

(b) gsm c

0

1

2

3

4

5

6

7

E
D

P
 (

J*
s)

Configuration

Estimated EDP Detailed EDP

(c) lame

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
D

P
 (

J*
s)

Configuration

Estimated EDP Detailed EDP

(d) patricia

Figure 9: Design space exploration of four benchmarks.
Configurations are ordered from high to low EDP values.

related to this paper.

7.1 Analytical modeling

There are basically three approaches to analytical model-
ing: mechanistic modeling, empirical modeling and hybrid
mechanistic/empirical modeling.

Mechanistic modeling derives a model from the mechan-
ics of the processor, and prior work focused on mechanis-
tic modeling of out-of-order processor performance for the
most part. Michaud et al. [23] build a mechanistic model
of the instruction window and issue mechanism. Karkha-
nis and Smith [17] extend this simple mechanistic model
to build a complete performance model that assumes sus-
tained steady-state issue performance punctuated by miss
events. Taha and Wills [28] propose a mechanistic model
that breaks up the execution into so-called macro blocks,
separated by miss events. Eyerman et al. [8] propose
the interval model for superscalar out-of-order processors.
Whereas all of this prior work focused on out-of-order pro-
cessors, Breughe et al. [3] proposed a mechanistic model for
scalar in-order processors. This paper presents a mechanis-
tic model for superscalar in-order processors which involves
substantial modeling enhancements with respect to long-
latency instructions and inter-instruction dependencies, as
explained in Section 2.

In contrast to mechanistic modeling, empirical modeling
requires little or no prior knowledge about the system being
modeled: the basic idea is to learn or infer a performance
model using machine learning and/or statistical methods
from a large number of detailed cycle-accurate simulations.
Empirical modeling seems to be the most widely used an-
alytical modeling technique today, and was employed for
modeling out-of-order processors only, to the best of our
knowledge. Some prior proposals consider linear regres-

sion models for analysis purposes [14]; non-linear regres-
sion for performance prediction [15]; spline-based regres-
sion for power and performance prediction [19]; neural net-
works [4, 13]; or model trees [26].

Hybrid mechanistic-empirical modeling targets the mid-
dle ground between mechanistic and empirical modeling:
starting from a generic performance formula derived from
understanding the underlying mechanisms, unknown pa-
rameters are derived by fitting the performance model
against detailed simulations. For example, Hartstein and
Puzak [11] propose a hybrid mechanistic-empirical model
for studying optimum pipeline depth; the model is tied
to modeling pipeline depth only and is not generally ap-
plicable. Eyerman et al. [9] propose a more complete
mechanistic-empirical model which enables constructing
CPI stacks on real out-of-order processors.

7.2 Inter-instruction dependency modeling

Dubey et al. [5] present an analytical model for the
amount of instruction-level parallelism (ILP) for a given
window size of instructions based on the inter-instruction
dependency distribution. Kamin et al. [16] approximate the
inter-instruction dependency distribution using an exponen-
tial distribution. Later, Eeckhout et al. [6] found a power
law to be a more accurate approximation.

The inter-instruction dependency distribution is an im-
portant program statistic for statistical modeling. Noonburg
and Shen [24] present a framework that models the execu-
tion of a program on a particular architecture as a Markov
chain, in which the state space is determined by the mi-
croarchitecture and in which the transition probabilities are
determined by the program. Statistical simulation [7, 25]
generates a synthetic program or trace from a set of statis-
tics.

8 Conclusion

Mechanistic analytical modeling of superscalar in-order
processor performance is more complicated than for out-
of-order processors. The fundamental reason is that out-
of-order processors are designed to hide the performance
impact of inter-instruction dependencies and non-unit in-
struction execution latencies, hence these effects do not
need consideration in mechanistic modeling. In this paper,
we proposed a mechanistic analytical performance model
for superscalar in-order processors, that models the impact
of non-unit instruction execution latencies, inter-instruction
dependencies, cache/TLB misses, and branch mispredic-
tions. The input parameters to the model are a set of pro-
gram and mixed program/machine statistics, along with a
set of machine parameters. Profiling needs to be done only
once for a given benchmark to collect the program-specific
statistics, and enables predicting performance for a broad
range of microarchitectures.

Our experimental results demonstrate the accuracy and
speedup of the proposed model: we achieve an average pre-
diction error of 2.5% and three orders of magnitude speedup
compared against detailed cycle-accurate simulation. Con-
sidering a superscalar microarchitecture design space in
which we vary pipeline depth, width, cache size and branch
predictor configuration, we demonstrate the model’s rela-
tive accuracy: for more than 90% of the design points,
we achieve a prediction error below 6%. Further, we il-
lustrate the usefulness of the model for providing insight
and analyzing in-order versus out-of-order processor per-
formance, the impact of compiler optimizations and for ex-
ploring power/performance design spaces.

Acknowledgements

We thank the reviewers for their constructive and in-
sightful feedback. Stijn Eyerman is supported through
a postdoctoral fellowship by the Research Foundation-
Flanders (FWO). Additional support is provided by the
FWO projects G.0255.08 and G.0179.10, the UGent-BOF
projects 01J14407 and 01Z04109, the ICT Department
of Ghent University, and the European Research Coun-
cil under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant agreement no.
259295.

References

[1] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. In SOSP, pages 1–14, Oct. 2009.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 simulator: Modeling
networked systems. IEEE Micro, 26(4):52–60, 2006.

[3] M. Breughe, Z. Li, Y. Chen, S. Eyerman, O. Temam, C. Wu,
and L. Eeckhout. How sensitive is processor customization
to the workload’s input datasets? In SASP, pages 1–7, June
2011.

[4] C. Dubach, T. M. Jones, and M. F. P. O’Boyle. Microar-
chitecture design space exploration using an architecture-
centric approach. In MICRO, pages 262–271, Dec. 2007.

[5] P. K. Dubey, G. B. Adams III, and M. J. Flynn. Instruction
window size trade-offs and characterization of program par-
allelism. IEEE Transactions on Computers, 43(4):431–442,
Apr. 1994.

[6] L. Eeckhout and K. De Bosschere. Hybrid analytical-
statistical modeling for efficiently exploring architecture and
workload design spaces. In PACT, pages 25–34, Sept. 2001.

[7] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Boss-
chere. Statistical simulation: Adding efficiency to the
computer designer’s toolbox. IEEE Micro, 23(5):26–38,
Sept/Oct 2003.

[8] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A mechanistic performance model for superscalar out-of-
order processors. ACM Transactions on Computer Systems
(TOCS), 27(2), May 2009.

[9] S. Eyerman, K. Hoste, and L. Eeckhout. Mechanistic-
empirical processor performance modeling for constructing
CPI stacks on real hardware. In ISPASS, pages 216–226,
Apr. 2011.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. In WWC,
Dec. 2001.

[11] A. Hartstein and T. R. Puzak. The optimal pipeline depth for
a microprocessor. In ISCA, pages 7–13, May 2002.

[12] M. D. Hill and A. J. Smith. Evaluating associativity in CPU
caches. IEEE Transactions on Computers, 38(12):1612–
1630, Dec. 1989.

[13] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and
R. Caruana. Efficiently exploring architectural design spaces
via predictive modeling. In ASPLOS, pages 195–206, Oct.
2006.

[14] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Con-
struction and use of linear regression models for processor
performance analysis. In HPCA, pages 99–108, Feb. 2006.

[15] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A pre-
dictive performance model for superscalar processors. In
MICRO, pages 161–170, Dec. 2006.

[16] R. A. Kamin III, G. B. Adams III, and P. K. Dubey. Dy-
namic trace analysis for analytic modeling of superscalar
performance. Performance Evaluation, 19(2-3):259–276,
Mar. 1994.

[17] T. Karkhanis and J. E. Smith. A first-order superscalar pro-
cessor model. In ISCA, pages 338–349, June 2004.

[18] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded SPARC processor. IEEE Micro,
25(2):21–29, March/April 2005.

[19] B. Lee and D. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power
prediction. In ASPLOS, pages 185–194, Oct. 2006.

[20] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In MICRO, pages 469–480, Dec.
2009.

[21] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge,
and S. Reinhardt. Understanding and designing new server
architectures for emerging warehouse-computing environ-
ments. In ISCA, pages 315–326, June 2008.

[22] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Eval-
uation techniques for storage hierarchies. IBM Systems Jour-
nal, 9(2):78–117, June 1970.

[23] P. Michaud, A. Seznec, and S. Jourdan. Exploring
instruction-fetch bandwidth requirement in wide-issue su-
perscalar processors. In PACT, pages 2–10, Oct. 1999.

[24] D. B. Noonburg and J. P. Shen. A framework for statistical
modeling of superscalar processor performance. In HPCA,
pages 298–309, Feb. 1997.

[25] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining
statistical and symbolic simulation to guide microprocessor
design. In ISCA, pages 71–82, June 2000.

[26] E. Ould-Ahmed-Vall, J. Woodlee, C. Yount, K. A. Doshi,
and S. Abraham. Using model trees for computer architec-
ture performance analysis of software applications. In IS-
PASS, pages 116–125, Apr. 2007.

[27] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web search
using mobile cores: Quantifying and mitigating the price of
efficiency. In ISCA, pages 26–36, June 2010.

[28] T. M. Taha and D. S. Wills. An instruction throughput model

of superscalar processors. IEEE Transactions on Computers,
57(3):389–403, Mar. 2008.

