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Abstract. To our knowledge, all applications of the quantum frame-
work in social sciences are used to model measurements done on a dis-
crete nominal scale. However, especially in cognition, experiments often
produce data on an ordinal scale, which implies some internal struc-
ture between the possible outcomes. Since there are no ordinal scales in
physics, orthodox projection-valued measurement (PVM) lacks the tools
and methods to deal with these ordinal scales. Here, we sketch out an
attempt to incorporate the ordinal structure of outcomes into the sub-
spaces representing these outcomes. This will also allow us to reduce the
dimensionality of the resulting Hilbert spaces, as these often become too
high in more complex quantum-like models. To do so, we loosen restric-
tions placed upon the PVM (and even POVM) framework. We discuss
the two major consequences of this generalization: scaling and the loss
of repeatability. We also present two applications of this approach, one
in game theory and one concerning Likert scales.
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1 Introduction

With the emerging success of applying the quantum probabilistic toolbox in
social sciences, there is also an increasing focus on its limitations. In physics,
the construction of the needed model is relatively straightforward. However, in
quantum cognition, the quite rigid recipe sometimes shows its limits both math-
ematically and interpretationally ([9]). So, it shouldn’t come as a surprise that
more recent work tries to expand the reach of these tools by looking at pos-
sibilities beyond the standard projective measurement (PVM) principles. The
best known generalization beyond PVM is the use of Positive Operator Val-
ued Measurement (POVMs) ([2]), but alternative, sometimes even more gen-
eral, approaches also arise (e.g. [11], [1]). These ventures are mostly theoretical
in nature, with applications using experimental data being rather sparse. None
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of these approaches, however, deals with the problem of representing outcomes
with an internal structure.

In this paper we present an idea which also goes beyond orthodox quantum-
like techniques. This new technique was originally formulated for a specific set-
ting in [10] and further developed and tested in the recently submitted [7]. In
these two papers, a model is constructed which deals with the relationship of a
participant’s beliefs and preferences in a game theoretic setting, taken from [3].
During this process, problems concerning a too high dimension of a Hilbert space
arose, which where solved by drawing inspiration from a rotational solution pre-
sented in [15] and (ab)using the ordered structure of the possible outcomes. To
do so, we opted to loosen certain restrictions which lead to alternative types of
projectors. While the solution to these problems served an ad hoc purpose, the
question if this new technique could be applied in different settings presented
itself.

Here we argue that this generalization of P(O)VM can be used to model any
situation where different outcomes of a measurement have an internal ordinal
structure. After defining this generalization, we discuss two consequences of using
this new structure and present two possible applications of this approach: the
game theoretic one mentioned before and Likert scales in general.

2 Revisiting the Clinton/Gore example

We take a new look at the quantum-like model concerning public opinion on Bill
Clinton and Al Gore. This is one of the go-to introductory examples in quantum
cognition, see for example [4]. In a Gallup poll, conducted September 6-7, 1997,
participants were asked 2 separate questions: if they think Clinton is trustworthy
and if they think Gore is trustworthy. When the Clinton question is posed first,
53% of the participants consider him to be trustworthy and 73% consider Gore to
be trustworthy. However, when the question order is reversed, 67% think Gore
is trustworthy and 59% think Clinton is trustworthy. This change in attitude
indicates an order effect, which suggests a quantum-like approach by considering
the Clinton and Gore questions to be incompatible. In the resulting quantum-
like model each question is represented by an orthogonal 2 dimensional basis,
with each vector representing the relevant ‘yes’ or ‘no’ answer and by defining
a 2-dimensional Hilbert space containing both bases. The resulting model has a
good statistical fit, with only two parameters (one coordinate of the state vector,
as the second coordinate is fixed due to the normalization restriction, and one
angle between the two bases) to be estimated.

We now identify two properties of this experimental paradigm, which be-
come problematic when we leave this relative simple example for more complex
ones. First, the number of possible outcomes is low. Both questions only allow
2 possible replies, while trustworthiness of presidential candidates could be con-
sidered far more complex. This gives the resulting Hilbert space a manageable
two dimensions. Note that as all measurements are considered incompatible, no
tensoring is required, which would increase dimensionality exponentially. Sec-
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ond, there is no structure in the outcomes. The yes and no outcomes are on a
discrete nominal scale, with no implicit relationship between them.

Let’s make the situation a bit more complex. First, suppose we want to add
some more nuance to the questions and allow for more replies: very trustwor-
thy/quite trustworthy/somewhat trustworthy/neutral/somewhat untrustworthy/quite
untrustworthy/very untrustworthy. These outcomes clearly have an internal struc-
ture, as they are ordered. This extension makes the resulting Hilbert space 7-
dimensional. Second, suppose that, for whatever research reasons, a third similar
measurement is performed, which also allows for a similar set of 7 outcomes, that
does not produce order effects. Even though the situation is not extreme from
an experimental point of view, the Hilbert space needed to model this situation
would be 49-dimensional. This would increase the amount of parameters needed
to fit the state vectors and subspaces dramatically, resulting in an inoperable
model. Next to this unwieldy dimensionality, this approach lacks the tools to
incorporate the ordinal structure of the outcomes. Since, to our knowledge, no
ordinal scales1 are present in quantum mechanics, where would these tools come
from? However, in contrast, ordinal scales are widespread in psychology, with
their own distinct theory, framework and statistics.

In what follows, we propose a first attempt at modeling ordinal outcomes,
within the quantum-like approach. This attempt also reduces the problematic
dimensionality that arises when measurements with more than two outcomes are
performed and tensoring is needed, when constructing the relevant bases.

3 Defining the new ordinal projectors

Paraphrasing Kirsty Kitto in her QI15 talk, see [2], a quantum(-like) measure-
ment M , with its set of possible outcomes {Mi}, is represented by a set of
subspaces {Mi}, where Mi represents outcome Mi. These subspaces Mi each
define a projector Pi, which projects any vector |S〉 on the relevant subspace
Mi. The state of a system (e.g. a participant in a psychological experiment) is
represented by a normalized state vector |ψ〉. Now, the mathematical rules are
quite straightforward:

(i) The probability of obtaining outcome Mi is 〈ψ|Pi|ψ〉 or, intuitively, the
closer the state vector is to the relevant subspace, the higher the probability
of obtaining that outcome.

(ii) After obtaining outcome Mi, the state after measurement becomes Pi|ψ〉√
〈ψ|Pi|ψ〉

or, intuitively, when obtaining an outcome, the state vector becomes a nor-
malized vector in the relevant subspace.

As is widely known, the orthodox quantum measurement paradigm (Projection-
valued measurement or PVM) demands that all subspaces associated with one
measurement are orthogonal and, perhaps trivially, that these subspaces span the
entire Hilbert space. This ensures that probabilities sum to one and that when

1 Ordinal scales are discrete scales with a well defined order on the outcomes.
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a measurement is performed twice, without any manipulation in between both
measurements, the same outcome is obtained twice. We call this last property
repeatability. Perhaps less widely known, when we weaken the demand that all
subspaces associated with one measurement are orthogonal but still ensure that
all probabilities sum to one by demanding that all relevant projector matrices
sum to the identity matrix: ∑

i

Pi = I, (1)

we obtain a more general class of measurements which we call Positive Operator-
Valued Measurement (POVMs). Note that POVMs do not adhere to repeata-
bility. This first generalization gives us freedom to incorporate structure in the
outcomes, while reducing the dimensionality. However, this solution is still more
restrictive then one might think at first, as the

∑
i Pi = I demand is still quite

strong. More concrete, when a set of outcome vectors is defined, typically an
extra outcome vector has to be introduced to ensure all projectors sum to the
identity matrix. Take, as an example, a simple two dimensional case. When two
non-orthogonal vectors |M1〉 = (1, 0) and |M2〉 = (cos θ, sin θ), with projectors

P1 =

(
1 0
0 0

)
and P2 =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
,

are needed to model an experimental situation, their projectors sum to:

P1 + P2 =

(
1 + cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)
.

Having the diagonal elements equal to one can easily be achieved by appropriate
scaling. However, to have the off-diagonal elements equal to zero, a third outcome
vector |M3〉 = (± cos θ,∓ sin θ) or |M3〉 = (± sin θ,∓ cos θ) must be introduced,
even when there is no third possible experimental outcome!

To solve this, we propose to omit the demand that all projectors sum to the
identity matrix, effectively losing almost all structure, but use this freedom to
add new structure which reflects our ordinal scale, while still adhering to our
basic quantum-like rules (i) and (ii). The necessity of generalizing measurement
beyond POVMs is not a new idea, as remarked in [9] and discussed in chapter 8
of [14].

As we only have two mathematical entities at hand (a state vector |ψ〉 and a
set of subspaces {Mi} representing outcomes), this structure has to be incorpo-
rated in these two. On the one hand, as the state vector is supposed to represent
the particular state of the system, the type of scale of the measurement should
not impact this state vector. On the other hand, as the set of subspaces is repre-
senting the outcomes, any structure between these outcomes, should be reflected
in a structure between the subspaces. This is why we allow subspaces associated
with outcomes of the same measurement to be non-orthogonal to each other.
Now we can define the notion of a subspace Mi being closer to a subspace
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Mj then to a subspace Mk, when M̂iMj , the angle2 between Mi and Mj , is

smaller then M̂iMk the angle betweenMi andMk. This gives us a natural way
of representing an ordinal scale with outcomes Mi (admitting to a well defined
order ≺) by demanding that :

Definition 1 if Mi ≺Mj ≺Mk, then M̂iMj ≤ M̂iMk & M̂jMk ≤ M̂iMk.

Note that the maximum angle between two subspaces is π/2, so orthogonal
subspaces are considered to be the farthest away possible from each other.

The exact value of these angles is an empirical question, which we discuss
later. When all relevant subspaces are orthogonal, each subspace adds its own
dimension to the total dimension of the encompassing Hilbert space, which is the
reason of the exploding dimensionality in the introductory example. As the need
for orthogonality is now omitted, the resulting dimensionality can be greatly
reduced as compared to the traditional PVM approach. This makes the dimen-
sion of the final Hilbert space also an empirical question and/or a deliberate
choice, taking into account, e.g., the number of data points or certain demands
for elegance or simplicity of the resulting model. The concepts for calculating
probabilities (i) and post-measurements states (ii) remain identical to the ones
used with PVMs and POVMs. Note that as all considered Pi are projectors,
they are still Hermitian positive semi-definite, so 〈ψ|Pi|ψ〉 is positive and real.
Because the state vector still gets projected on the subspace representing the
obtained outcome, this approach keeps the quantum-like nature. As a result, all
concepts (order effects, contextuality, entanglement...) used in quantum cogni-
tion are still a part of this approach because the regular PVM structure is now
a specific case of our more general framework.

4 Consequences

Our loosening of restrictions used when defining P(O)VMs has significant con-
sequences. Here, we discuss the major two.

4.1 Sum of probabilities

As we do not require restriction (1) to hold, it is possible that the sum of the
possibilities across all possible outcomes exceeds 1. While this seems problematic
at first, two solutions naturally present themselves. First, a scaling factor can be
introduced. This is the solution used in [7]. Keeping the notations defined as in
the previous section, for all |ψ〉 define CM as:

CM =
∑
j

〈ψ|Pj |ψ〉. (2)

2 The angle M̂iMj between two subspaces Mi and Mj is classically defined as

min(V̂iVj), with Vi ∈ Mi and Vj ∈ Mj .



6 J. Denolf

This allows us to scale appropriately. Now, we redefine the probability of obtain-
ing outcome Mi as

P ′(Mi) =
P (Mi)

CM
(3)

=
〈ψ|Pi|ψ〉∑
j〈ψ|Pj |ψ〉

. (4)

This gives us

∑
i

P ′(Mi) =

∑
i〈ψ|Pi|ψ〉∑
j〈ψ|Pj |ψ〉

(5)

= 1. (6)

While this approach lacks mathematical elegance, it effectively makes the
probabilities sum to one.

A second, more elegant, solution is inspired by classical logistic regression.
In logistic regression, a function f(x1 . . . xn) is derived, where, given a number
of predictors x1 . . . xn, the outcome of a binary variable (A or ¬A) is estimated.
The natural way of predicting a binary outcome would be to estimate the prob-
ability of obtaining A. However, as there is no way to ensure that the image
of the derived function f(x1 . . . xn) is a subset of [0, 1] (the same problem as

with our non-orthogonal subspaces) the odds P (A)
P (¬A) are modeled, instead of the

probability P (A). Since odds only have the restriction that they are positive,
this approach can also be successfully introduced here:

ODDS(Mi) =
P (Mi)

P (¬Mi)
(7)

=
〈ψ|Pi|ψ〉
〈ψ|I − Pi|ψ〉

. (8)

Using odds does not introduce any new factors, making it more elegant math-
ematically. One can easily calculate standard probabilities from these odds since
the scaling factor needed beforehand would disappear throughout the calcula-
tions. However, odds might be more difficult to interpret. To our knowledge,
there are no quantum-like models where these odds are used. It can be easily
shown by calculating the odds with the newly defined P ′(Mi) that both solutions
are identical from a modeling point of view.

4.2 Loss of repeatability

As a consequence of allowing non-orthogonal subspaces to represent outcomes of
the same measurement, we lose repeatability: when a measurement is performed
twice, without any manipulation between both measurements, two different out-
comes can be obtained. While repeatability seems a necessity at first, multiple
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instances where it is not required (or is even considered too strict) can be found
in, among other fields, cognition. The best known approach lacking repeatability
is the use of POVMs, which we defined in section 3. For an in-depth discussion
of the use of POVMs in cognition and the relationship to repeatability, we refer
to [2] and [9]. More on the application of POVMs in physics can be found in
[13]. Summarizing, models not adhering to repeatability are not only feasible,
but also sometimes required within quantum cognition.

What could this loss of repeatability mean within our Clinton/Gore example
and ordinal scales in general? When we go back to our 7 outcome ordinal scale
‘very trustworthy/quite trustworthy/somewhat trustworthy/neutral/somewhat
untrustworthy/quite untrustworthy/very untrustworthy’, we claim that some of
these outcomes should not exclude each other. To justify this, we introduce the
notion of unsharp measurement. This idea is already successfully implemented
in [7]. We claim that when participants are forced to pick one of these outcomes,
their reply does not mean a complete dismissal of another option as these opin-
ions are not completely distinguishable (see also the discussion of ‘distinguishing
quantum states in 2.2.4 of [14]). When, e.g., a participant replies that he thinks
Gore is somewhat trustworthy, the participant does not necessarily disagree with
the notion that Gore is quite trustworthy. The more probable it is that two op-
tions do not preclude each other, the closer their respective vector spaces should
be. While the example might be too simple and underestimating the cognitive
abilities of the participants, there is always a tipping point where outcomes do
become psychologically indistinguishable. To construct an extreme example, sup-
pose that the trustworthiness question allows for an ordinal scale ranging from
1 (untrustworthy) to 1000 (trustworthy). There is no participant that could suc-
cessfully fathom the difference between, e.g., replying 503 and replying 504. The
internal structure we incorporated, ensures that if repeatability is violated in
such cases, the possible outcomes of the repeated questions are neatly scattered
around the original answer, as the closer two subspaces are, the more likely it is
that the outcomes they represent are obtained after each other. The upper limit
case of this is the original outcome, which has the highest probability of being
obtained again. The lower limit case of this are outcome vectors orthogonal to
the vector representing the original outcome. They can not be obtained in the
repeated measurement. As such, the class of measurements where repeatability
does occur, is a subclass of the one we propose, by having all relevant outcome
vectors orthogonal.

Note that this idea of unsharp measurement can be empirically tested. To
do so, simply confront the participant with a different option than the given
reply and ask if the participant could agree with it. These ideas allow the model
to be constructed in an empirical way: test or argue which outcomes are mutu-
ally exclusive and represent these by orthogonal subspaces (this also determines
the dimension of the resulting Hilbert space). Observe which outcomes are not
excluded and define their subspaces accordingly. We illustrate this type of rea-
soning in the second example of the next section. Moreover, this approach allows
for statistical testing of certain cognitive hypotheses concerning cognitive abili-
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ties and/or ordinal scaling by checking if allowing these ‘close’ subspaces results
in (more) satisfying statistical fits of experimental data.

5 Applications

5.1 QP&B model

A first example where these new types of projectors on non-orthogonal subspaces
have already been constructed and successfully applied was presented in [10]
and later expanded upon in [7] (including a successful statistical test against
experimental data) . The incentive of constructing them in this paradigm, lay
in the emergence of a problematic dimensionality when following the traditional
quantum-like course. A thorough overview of the game theoretic experiment
and the resulting model falls outside the scope of this paper. The relevant part
in this discussion concerns the part of the experiment where participants are
asked to estimate how much of their 9 possible opponents in a game choose
to cooperate (as opposed to defect) in a certain step of the experiment. As
this measurement allows 10 different outcomes (0 . . . 9 opponents believed to
be cooperating), it naturally leads to a 10 dimensional Hilbert space. Due to
the relationship between other measurements performed in this experiment, two
of these Hilbert spaces need to be tensored, resulting in a (problematic) 100-
dimensional Hilbert space. Internal structure is clearly present in the replies, as,
e.g., replying ‘6’ is closer to replying ‘7’ then it is to replying ‘8’. Combined with
an argument that the ‘0’ and ‘9’ replies should exclude each other, which forces
the subspaces representing ‘0’ and ‘9’ to be orthogonal, the resulting subspaces
are defined in a 2-dimensional Hilbert space, with reply ‘i’ being represented
by vector |Bi〉, as can be seen in figure 1. Defining the participant’s beliefs as
projections of the state vector in the same plane doesn’t differ much from rotating
the state vector by using a Hamiltonian, as is done in a similar prisoner dilemma
setting in [5]. However, we opted to still derive probabilities from our projectors,
as opposed to just using the rotation for representing a time evolution, as in [5].
This approach reduced the problematic dimensionality, with the final dimension
equal to 4, while still retaining the advantages quantum-like models provide
(such as modeling order effects) and yielded a very good statistical fit.

It is worth mentioning briefly that the above situation can also be modeled
using a POVM structure, with an extra outcome, as mentioned when discussing
POVMs in section 3. This approach is taken from [17], where it is described
in detail. To do so we keep the definition of the 10 outcome vectors |Bi〉 as
beforehand and define an ad hoc new outcome vector |Bf 〉, representing that
‘the measurement has failed’, similar to the vector |M3〉 in section 3. This |Bf 〉
ensures that all projector matrices sum to the identity matrix. The probabilities
in this case are redefined as the probabilities of obtaining a certain outcome on
the condition that the measurement didn’t fail. When ‘the measurement failed’
outcome would be (theoretically) obtained, the measurement is supposed to re-
done immediately. The resulting probabilities are identical to the probabilities
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|B0〉

|B9〉

|S〉

|B7〉

Fig. 1. The outcome ‘i’ is represented by |Bi〉. The participant is represented by state
vector |S〉. Here, the participant replies that he thinks 7 opponents have cooperated,
projecting/rotating the state vector onto |B7〉.

obtained by using our new non-POVM ordinal structure. Note that in this exper-
imental setting the measurement never fails, therefor the POVM structure does
not represent the experiment in a clean way. This poses a question to the mod-
eler: to stay within the bounds of POVM structures, at the cost of not naturally
representing the experiment or to stray beyond POVM structure, but achieving
a straightforward representation of the experiment.

5.2 Likert scales

A second natural candidate for this treatment is the modeling of Likert scales (for
an overview on Likert scales, see [16]). Likert scales are used in polling of opinions
and consist of multiple Likert items. A Likert item consists of a statement,
which the participant evaluates on a given scale. This scale should be symmetric
(a neutral option and and equal number of positive and negative options) and
balanced (the perceived distance between following options is equal). The format
of a typical five level Likert item looks like

strongly disagree (1) - disagree (2) - neutral (3) - agree (4) - strongly agree (5),

which is clearly on an ordinal scale. These Likert scales are widely used in
Psychology in general and in opinion polling surveys in particular. The use of
quantum-like techniques when dealing with these kind of surveys is already es-
tablished, as, e.g., they are prone to order effects ([12]). Some work has already
been done to use quantum-like techniques when dealing with Likert scales ([6]).
However, this approach suffers from the two problems flagged before. First, the
dimension of the used Hilbert spaces gets high very quickly and second, the im-
plicit ordinal structure of the outcomes is represented in the state vector, which
should only represent the participant, and not in the outcome vectors. Our view
opens up new possibilities to tackle these Likert scales. We construct one as an
example, but keep in mind that this particular form has not been tested against
any experimental data. We only wish to take some first steps to showcase the
flexibility of our approach. When looking at the (1)-(5) scale presented above,
we argue that ‘strongly disagree (1)’, ‘neutral (3)’ and ‘strongly agree (5)’ should
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exclude each other, as we consider them in our example as non-nuanced, very
clear opinions . As such, they are represented by orthogonal vectors, called |1〉, |3〉
and |5〉 respectively, giving us a 3-dimensional Hilbert space H. We also argue
that picking options (2) or (4), represented by the vectors |2〉 and |4〉, does not
necessarily means that the participant disagrees with (1) and (3) or (3) and (5)
respectively. Keeping in mind the balanced property of Likert scales, places |2〉
symmetrically between |1〉 and |3〉 and |4〉 symmetrically between |3〉 and |5〉.
Note that we can easily incorporate assumptions (e.g. balanced) from Likert scale
theory into our model. This naturally leads to the structure depicted in figure 2.

|3〉

|5〉

|ψ〉

|4〉|2〉

|1〉

Fig. 2. The outcome ‘(i)’ is represented by |i〉. The participant is represented by state
vector |ψ〉.

Our implied structure in the outcomes does not impose restrictions on the
agents. We can still model a person who doubts between (1) and (5) but not (3),
by having a state vector equal to, for example, |ψ〉 = (1/

√
2, 0, 1/

√
2).

Our arguments about the (non)-excluding outcomes and resulting dimen-
sions here are very superficial. One could, e.g., argue that option (3) should
be symmetrical between (1) and (5), leading to a 2-dimensional Hilbert space.
A meticulous investigation of Likert scales in this paradigm falls outside the
scope of this paper. We only wish to show that it is possible to represent inher-
ent ordinal structure in the outcomes, possibly combined with other theoretical
assumptions or restrictions.

6 Concluding remarks

In this paper we propose some tentative first steps towards modeling ordinal
scales using quantum-like techniques. After losing some of the restrictions used
in the construction of projective measurements (and even lose restrictions placed
upon POVMs), we use this lack of structure to impose new structure, now orig-
inating from the internal structure that ordinal outcomes exhibit. These tech-
niques also allow for a reduction of the resulting dimensionality, as this can be-
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come problematic quickly in slightly more complex situations than the common
examples seen in quantum cognition. We discuss the two biggest consequences of
this approach, the first one being the total sum across all probabilities exceeding
one and the second one being the loss of repeatability of outcomes. Exceeding
one when adding the probabilities makes scaling necessary or requires the mod-
eling of odds of outcomes instead of probabilities. We argue that the loss of
repeatability is not as problematic as it seems at first and provide a possible in-
terpretation of this phenomenon. Finally, we mention two possible applications.
First, we give a short overview of an implementation already done in a game the-
oretic setting. Second, we propose the idea of applying our quantum-like ordinal
system to model Likert scales.

This contribution is only a first step into modeling ordinal scales in a quantum-
like way. The theoretical side of this story needs to be deepened, with a more
thorough discussion of the concepts sketched out in section 3, next to investigat-
ing structures similar in role to Naimark’s Theorem for POVMs ([8]). Also, more
data-driven applications than the one presented here need to be formulated and
statistically tested to investigate the true merit of this new approach.
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