
Generating Conflict-Free Treatments for
Patients with Comorbidity using ASP

Elie Merhej1, Steven Schockaert2, T. Greg McKelvey4?, and
Martine De Cock1,3

1 Ghent University, Ghent, Belgium
{elie.merhej,martine.decock}@ugent.be

2 Cardiff University, Cardiff, United Kingdom
schockaerts1@cardiff.ac.uk

3 University of Washington Tacoma, Tacoma, USA
mdecock@u.washington.edu

4 KenSci, Seattle, USA
Greg@KenSci.com

Abstract. Conflicts in recommended medical interventions regularly
arise when multiple treatments are simultaneously needed for patients
with comorbid diseases. An approach that can automatically repair such
inconsistencies and generate conflict-free combined treatments is thus
a valuable aid for clinicians. In this paper we propose an answer set
programming based method that detects and repairs conflicts between
treatments. The answer sets of the program directly correspond to pro-
posed treatments, accounting for multiple possible solutions if they exist.
We also include the possibility to take preferences based on drug-drug
interactions into account while solving inconsistencies. We show in a case
study that our method results in more preferred treatments.

1 Introduction

Clinical Practice Guidelines (CPGs) are documents created by experts in the
medical field in order to help clinicians in treating certain diseases [8]. To make
CPGs more accessible and easier to use, many frameworks have been developed
that gather important information from a relevant CPG and transform it into a
computer interpretable format [2,6,10]. The resulting representation is called a
Computer Interpretable Guideline (CIG). These frameworks usually create task
networks that represent possible treatments of the disease based on certain ac-
tions, decisions and tests. When a physician wants to treat a specific disease,
they consult the corresponding task network and follow the presented procedure
based on the test results that are available for the patient. A lot of research
has been done to improve CIGs by including, for example, patient-specific infor-
mation in the generated task networks [11,9], different kinds of treatments [1]
and even rules about hospital and insurance policies in order to create the best

? University of Washington Occupational and Environmental Medicine Fellow

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


possible personalized treatment for every patient. In addition, research has been
done for the verification of the resulting medical guidelines [3].

It is important, however, to note that CPGs were originally designed to treat
every disease separately. Recent studies have shown that the number of patients
with comorbidity, i.e. diagnosed with multiple diseases simultaneously, keeps
rising [5]. Combining CIGs for individual diseases regularly results in conflicts
between the recommended treatments. These conflicts can be on different levels:
drug-drug interactions, drug-disease interactions, etc. Often these conflicts can
be solved by the expertise of the physician, especially when swapping a drug by
another one could resolve the conflict. Given the increasing number of CIGs and
the complexity of the presented treatments, a system that can automatically
detect [13] and repair inconsistencies when combining multiple CIGs [4] would
be a valuable aid for clinicians.

Building on recent work by Wilk et al. [12], implemented in Zhang et al. [14],
we present in this paper an answer set programming (ASP) based approach
for generating conflict-free treatments for comorbid patients. ASP is a declar-
ative problem solving language, which allows one to describe a problem as a
set of logical rules. ASP solvers are then used to find answer sets, i.e. the sets
of facts that satisfy all the encoded rules. In our case, the ASP rules represent
the method to detect and repair conflicts in candidate treatments, while the
answer sets correspond to valid combined treatments. Removing inconsistencies
in treatments involves applying mitigation operators (MOs) [12] which by them-
selves can introduce undesirable drug-drug interactions. Therefore, we define
preferences among the answer sets by assigning a penalty based on the drug-
drug interactions they contain. This penalty is equal to the sum of individual
penalties introduced by every drug-drug interaction found, which depends on the
severity of the corresponding interaction. Treatment penalties induce a ranking
from the most preferred valid treatment (i.e. with the smallest penalty) to the
least preferred (i.e. with the highest penalty). The main differences between our
approach and the work by Zhang [14] are:

– All the answer sets that we generate are valid solution treatments.

– We apply one MO at a time, instead of all simultaneously, until a point of
contention is eliminated.

– We introduce preferences among solution treatments based on drug-drug
interactions, to select the most desirable treatment among the given candi-
dates.

The remainder of the paper is structured as follows: after recalling some pre-
liminaries about ASP in Section 2, in Section 3 we present a method to resolve
conflicts that arise when applying multiple CPGs on a patient with comorbid
diseases, and rank solution treatments based on drug-drug interactions. In Sec-
tion 4, we show the advantages of our approach by introducing a case study that
involves the task networks from the CPGs for duodenal ulcer (DU) and transient
ischemic attack (TIA). Finally, we conclude in Section 5.



2 Answer Set Programming

Answer Set Programming (ASP) is a declarative problem solving language [7],
which allows one to describe a problem as a set of rules of the form h ←
a1, . . . , aj ,not bj+1, . . . ,not bk. ASP solvers can then find the answer sets (see
below) which correspond to the solutions of the encoded problem. The head
and the body of an ASP rule r are respectively defined as head(r) = h and
body(r) = {a1, . . . , aj , not bj+1, . . . , not bk}. The “,” in the body of r repre-
sents a conjunction. If body(r) = ∅, then r is called a fact. If head(r) = ∅, then
r is called a constraint. Constraints act as filters on the possible answer sets.
The keyword not represents negation-as-failure in ASP, where not a intuitively
holds whenever we cannot derive that a holds. Let body+(r) = {a1, . . . , aj} and
body−(r) = {bj+1, . . . , bk}. A set of atoms X is closed under Π if for any rule
r ∈ Π, head(r) ∈ X whenever body+(r) ⊆ X. The smallest set of atoms closed
under Π is denoted by Cn(Π). The reduct ΠX of Π relative to X is defined by
ΠX = {head(r)← body+(r) | r ∈ Π and body−(r)∩X = ∅}. A set X of atoms is
called an answer set (i.e. stable model) of Π if Cn(ΠX) = X. For example, let
Π be the answer set program formed by the rule c ← not b, the rule b ← not c
and the fact a. This program has two answer sets {a, c} and {a, b}.

3 Finding Preferred Conflict-Free Treatments

As in [14], we propose an ASP implementation of the theoretical method pro-
posed in [12] to resolve conflicts that arise in the concurrent application of CPGs
on a patient with multiple diseases. These CPGs are represented by task net-
works that contain their relevant information. We formulate our encoding such
that every answer set corresponds directly to a solution treatment, which is dif-
ferent from the encoding proposed in [14]. The facts of our ASP program encode
task networks (action nodes, decision nodes, edges and labels), patient infor-
mation, MOs, and a given set of points of contention that can occur. To find
solution treatments, first we pick a candidate treatment from the task network
of every disease (rules 1-2), which is also compliant with the encoded patient
information (rules 3-5).5

candidateEdge(Ag,X, Y )← edge(Ag,X, Y ), not nCandidateEdge(Ag,X, Y ). (1)

nCandidateEdge(Ag,X, Y )← edge(Ag,X, Y ), not candidateEdge(Ag,X, Y ). (2)

nodeInTreat(Ag,X)← candidateEdge(Ag,X, Y ). (3)

nodeInTreat(Ag, Y )← candidateEdge(Ag,X, Y ). (4)

← dNode(Ag,X), nodeInTreat(Ag,X), patientInfo(X,L),

label(Ag,X, Y, L), not candidateEdge(Ag,X, Y ).
(5)

Then, we detect active points of contention in every pair of candidate treatments
by checking whether every action in the point of contention is in the selected
candidate treatment. To eliminate every detected point of contention, we apply

5 For the full code, see http://www.cwi.ugent.be/ComorbidityConflictSolver.html



an applicable MO (rules 6-7). A solution treatment consists then of a combina-
tion of candidate treatments modified by the applied MO (rules 8-10) that does
not contain active points of contention (rules 11-14).

applyMO(PocID,MoID)← activePOC (PocID), applicableMO(PocID,MoID),

not napplyMO(PocID,MoID).
(6)

napplyMO(PocID,MoID)← activePOC (PocID), applicableMO(PocID,MoID),

not applyMO(PocID,MoID).
(7)

solutionTreat(TD,A)← activeAction(TD,A), applyMO(PocID,MoID),

moTD(MoID, TD), not moToBeRemoved(MoID, A).
(8)

solutionTreat(BD,A)← applyMO(PocID,MoID), moBD(MoID, BD),

moRHS(MoID, pos(A)).
(9)

solutionTreat(BD,A)← activeAction(BD,A), applyMO(PocID,MoID),

moBD(MoID, BD), not occursIn(A,MoID).
(10)

solutionAction(A)← solutionTreat(D,A). (11)

ignorePOC (PocID)← not solutionAction(A), pocAction(PocID, A). (12)

pocFound(PocID)← poc(PocID), not ignorePOC (PocID). (13)

← pocFound(PocID). (14)

Different from [14], where all applicable MOs are applied simultaneously, we
apply only one MO at a time (rules 15-18). Applying multiple MOs to resolve
the same point of contention has a high chance of introducing multiple drugs that
have the same purpose in the same treatment. This is not advised for multiple
reasons. First, it creates treatments that contain a higher dosage of a substance
than originally intended. Second, the number of side effects that a patient may
develop increases when the number of prescribed drugs increases, and third,
avoidable drug-drug interactions may be introduced.

appliedMOs(PocID, X)← X = #count{applyMO(PocID,MoID)}, activePOC (PocID). (15)

errorApplyingMo(PocID)← appliedMOs(PocID, X), X < 1 . (16)

errorApplyingMo(PocID)← appliedMOs(PocID, X), X > 1 . (17)

← errorApplyingMo(PocID). (18)

Among all solution treatments found by the rules above, some might be pre-
ferred over others depending on the severity of drug-drug interactions that are
introduced to the treatment after applying the corresponding MO. These in-
teractions may persist in proposed valid solution treatments due to different
factors. On one hand, some drug-drug interactions may only be partially de-
scribed, i.e. only the cause of the interaction is known, but the way to mitigate
it is still unknown. Hence, these interactions cannot be encoded in mitigation
operators. We therefore propose to use them to penalize the obtained solution in
case they are present. On the other hand, with the continuous improvements in
clinical research, previously reliable MOs may become outdated, thus containing
incomplete or inaccurate information. Applying these MOs to resolve conflicts
when combining new treatments may then introduce drug-drug interactions that
were previously undetected.

To induce a ranking among solution treatments, we encode in our program
facts of the form “drug(X )” that read “X is a drug” and facts of the form



“interaction(X,Y,C)” that read “drug X has an interaction level C with drug
Y ”. These drug-drug interactions are included for every pair of drugs present in
the treatments. Their respective interaction levels can be found in the medical
literature (see Section 4). For every treatment we then assign a penalty that is
equal to the sum of all the levels of interactions between the drugs in that treat-
ment (rules 19-21). The treatment that minimizes this penalty is considered the
best (rule 22). Note that this ASP encoding can output all possible treatments
with their respective optimization value when specified by the ASP solver, and
not only the best one.6 This allows the ranking of all the treatments from most
to least preferred.

solutionDrug(X)← solutionAction(X), drug(X). (19)

solutionInteraction(X,Y,C)← interaction(X,Y,C), solutionDrug(X), solutionDrug(Y ). (20)

interactionsPenalty(P )← P = #sum[solutionInteraction(X,Y,C) = C]. (21)

#minimize[interactionsPenalty(P) = P ]. (22)

4 Case Study

We extend a use case from [14] to show the advantages of our approach. The
example involves the task networks from the CPGs for duodenal ulcer (DU) and
transient ischemic attack (TIA), shown in Fig. 1 [12], and a patient who is di-

Fig. 1. Task networks for treating the DU disease (left) and the TIA disease (right).

6 See http://www.cwi.ugent.be/ComorbidityConflictSolver.html



agnosed with both diseases. The following patient information is used: H.pylori
test negative, ulcer healed, hypoglyacemia absent, FAST test positive, and neu-
rological symptoms resolved. No data is included concerning the risk of stroke.
Based on this information, one candidate treatment is extracted from the task
network of DU: CT 1

du = {SA,PPI ,SC} and two candidate treatments from
the task network of TIA: CT 1

tia = {A,PCS} and CT 2
tia = {A,D}. We use the

following four MOs:

1. MO1: {tia, du, {A,SA}, {pos(A)7,neg(D)}, {neg(A), pos(Cl)},SA}
2. MO2: {tia, du, {A,SA}, {pos(A), pos(D)}, {pos(A), pos(D), pos(PPI )},SA}
3. MO3: {tia, du, {A,SA}, {pos(A),neg(D)}, {pos(A), pos(Cy8)},SA}
4. MO4: {tia, du, {A,SA}, {pos(A),neg(D)}, {pos(A), pos(Fl9)},SA}

For this scenario, our ASP rules 1-18 from Section 3 generate four answer sets:
ST 4, ST 6, ST 7 and ST 9 shown in Table 1. One can verify that ST 4, ST 6 and
ST 7 result from applying MO3, MO4 and MO1 respectively to the combination
of the treatments CT 1

du and CT 1
tia. Each of these MOs correctly removes the

conflict introduced by the actions “A” and “SA”. Similarly, the solution treat-
ment ST 9 arises from applying MO2 to the combination of treatments CT 1

du

and CT 2
tia.

Name Answer Set
MOs

Applied
Penalty

Zhang’s
Approach

Preference Based
Approach

ST 1 {PPI, SC, A, PCS, Cl, Cy, Fl} MO1,MO3,MO4 7 Y N

ST 2 {PPI, SC, A, PCS, Cy, Fl} MO3,MO4 4 Y N

ST 3 {PPI, SC, A, PCS, Cl, Cy} MO1,MO3 5 Y N

ST 4 {PPI, SC, A, PCS, Cy} MO3 2 Y Y (2)

ST 5 {PPI, SC, A, PCS, Cl, Fl} MO1,MO4 6 Y N

ST 6 {PPI, SC, A, PCS, Fl} MO4 3 Y Y (3)

ST 7 {PPI, SC, PCS, Cl} MO1 3 Y Y (3)

ST 8 {} - Inv. Inv. Inv. Y N

ST 9 {PPI, SC, A, D, NC} MO2 1 Y Y (1)

ST 10 {} - Inv. Inv. Inv. Y N

Table 1. Solution treatments found by Zhang’s approach, and by our preference based
approach. “Inv.” indicates an invalid treatment. “Y” indicates that a treatment is
given as a solution by the approach. “N” indicates that a treatment is not given as a
solution by the approach. “Y(P)” indicates that a treatment is given as a solution by
the preference based approach with the rank P.

Next, rules 19-22 can be used to induce a preference ranking over the valid
solution treatments, based on the interaction levels of the drugs in the proposed
treatments. We consider four levels of interactions: major, moderate, minor and

7 The keywords pos(X) and neg(X) refer to an action X being present and absent
from a treatment respectively.

8 Cy: Cyanocobalamin
9 Fl: Flibanserin



no interaction, represented correspondingly in our ASP program by 3, 2, 1 and
0.10 Now, running the same scenario in our ASP program identifies a preferred
solution treatment: ST 9. In fact, ST 7 contains 1 major drug-drug interaction
between Cl and PPI (penalty=3), ST 9 contains 1 minor drug-drug interaction
between A and PPI (penalty=1), ST 4 contains 2 minor drug-drug interactions
between A and PPI, and between Cy and PPI (penalty=1+1=2), and ST 6

contains 1 minor drug-drug interaction between A and PPI, and 1 moderate
drug-drug interaction between Fl and PPI (penalty=1+2=3). With ST 9 having
the lowest penalty, it is indeed the best possible treatment (rank=1).

Running the same scenario using Zhang’s program [14] gives 10 answer sets,
shown in Table 1. In addition to the solutions found by our preference based
approach, Zhang’s program gives 2 invalid solution treatments where no MOs
are applied: ST 8 and ST 10, and 4 answer sets where multiple MOs are applied
simultaneously: ST 1, ST 2, ST 3 and ST 5. These last 4 solution treatments have
penalties equal to 7, 4, 5 and 6 respectively, which are higher than penalties
of solution treatments found by applying one MO at a time. This shows that
applying multiple MOs concurrently may introduce avoidable and potentially
more dangerous drug-drug interactions.

5 Conclusion

The number of patients diagnosed with multiple diseases is rising. In this pre-
liminary paper, we presented an extension of Zhang and Zhang’s ASP encoding
for the problem of generating conflict-free treatments for patients with comor-
bidity [14]. A noteworthy difference between our approach and the work in [14]
is that all answer sets of our ASP program directly correspond to solution treat-
ments, which makes it arguably easier to use by physicians. In addition, our ASP
program adheres closer to [12] in applying one MO at a time instead of all simul-
taneously, in the case where multiple applicable MOs are available. This distinc-
tion is clinically important because applying multiple MOs in parallel has a high
chance of introducing multiple drugs that have the same purpose in the same
treatment. Furthermore, we refined our ASP program with a ranking mechanism
based on the severity of drug-drug interactions in solution treatments, thereby
providing a technique to identify preferred treatments. An interesting direction
for future research involves expanding the current ASP encoding with multiple
ways of defining preferences between treatments, such as different types of inter-
actions (drug-disease, drug-food, etc.) to complement the drug-drug interactions
that we already included. We also plan to work with multiple medical experts in
order to create a better encoding of the candidate treatments specified in clinical
guidelines that accounts for the time variable, and more specific action nodes.

10 Drug-drug interactions obtained from the “Interactions Checker” at www.drugs.com



References

1. Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., Davidson,
J.E., Devlin, J.W., Kress, J.P., Joffe, A.M., et al.: Clinical practice guidelines for
the management of pain, agitation, and delirium in adult patients in the intensive
care unit. Critical care medicine 41(1), 263–306 (2013)

2. De Clercq, P.A., Blom, J.A., Korsten, H.H., Hasman, A.: Approaches for creating
computer-interpretable guidelines that facilitate decision support. Artificial intel-
ligence in medicine 31(1), 1–27 (2004)

3. Hommersom, A., Groot, P., Lucas, P.J., Balser, M., Schmitt, J.: Verification of
medical guidelines using background knowledge in task networks. IEEE Transac-
tions on Knowledge and Data Engineering 19(6), 832–846 (2007)

4. Jafarpour, B., Abidi, S.S.R.: Merging disease-specific clinical guidelines to handle
comorbidities in a clinical decision support setting. In: Conference on Artificial
Intelligence in Medicine in Europe. pp. 28–32. Springer (2013)

5. Jakovljevic, M., Ostojic, L.: Comorbidity and multimorbidity in medicine today:
challenges and opportunities for bringing separated branches of medicine closer to
each other. Psychiatr Danub 25(Suppl 1), 18–28 (2013)

6. Latoszek-Berendsen, A., Tange, H., Van Den Herik, H., Hasman, A., et al.: From
clinical practice guidelines to computer-interpretable guidelines. Methods of infor-
mation in medicine 49(6), 550–570 (2010)

7. Lifschitz, V.: What is answer set programming?. In: AAAI. vol. 8, pp. 1594–1597
(2008)

8. Panel, D.: Clinical practice guidelines. Vol I. Washington, DC: Agency for Health
Care Policy and Research (1993)

9. Spiotta, M., Bottrighi, A., Giordano, L., Dupré, D.T.: Conformance analysis of the
execution of clinical guidelines with basic medical knowledge and clinical terminol-
ogy. In: Workshop on Knowledge Representation for Health-Care Data, Processes
and Guidelines. pp. 62–77. Springer (2014)

10. Ten Teije, A., Miksch, S., Lucas, P.: Computer-based medical guidelines and pro-
tocols: a primer and current trends, vol. 139. Ios Press (2008)

11. Tu, S.W., Campbell, J.R., Glasgow, J., Nyman, M.A., McClure, R., McClay, J.,
Parker, C., Hrabak, K.M., Berg, D., Weida, T., et al.: The sage guideline model:
achievements and overview. Journal of the American Medical Informatics Associ-
ation 14(5), 589–598 (2007)

12. Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra,
S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using
constraint logic programming. Journal of biomedical informatics 46(2), 341–353
(2013)

13. Zamborlini, V., Hoekstra, R., Da Silveira, M., Pruski, C., ten Teije, A., van Harme-
len, F.: Inferring recommendation interactions in clinical guidelines. Semantic Web
7(4), 421–446 (2016)

14. Zhang, Y., Zhang, Z.: Preliminary result on finding treatments for patients with
comorbidity. In: Knowledge Representation for Health Care, pp. 14–28. Springer
(2014)


	Generating Conflict-Free Treatments for Patients with Comorbidity using ASP

