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Summary

 

. Two control strategies for multivariable processes are proposed that are based on a decentralised and a steady state 
decoupling approach. The designed controllers are fractional order PIs. The efficiency and robustness of the proposed strategies is tested 
and validated using a non-minimum phase process. Previous research for the same non-minimum phase process has proven that simple 
decentralised or decoupling techniques do not yield satisfactorily results and a multivariable IMC controller has been proposed as an 
alternative solution. The simulation results presented in this paper show that the proposed fractional order multivariable control strategies 
ensure an improved closed loop performance and disturbance rejection, as well as increased robustness to modelling uncertainties, as 
compared to traditional multivariable IMC controllers. 

Introduction 
 
The large majority of chemical processes are multivariable in nature, exhibiting some strong couplings and occasionally 
a non-minimum phase character that makes the control design problem a challenging task [1,2]. In general, for such 
systems, the objective of a control system is to maintain several controlled variables at independent set points. Despite 
the coupling problems associated with multivariable systems, a non-minimum phase system is even more difficult to 
control. None of the techniques that are based upon model inversion can be used since such an inversion leads to an 
unstable closed loop system. Multivariable controllers have been previously designed for such systems. However, 
simplified algorithms are generally preferred. In contrast to the centralised multivariable control, decentralised control is 
widely preferred in practice and industrial applications especially because of its main advantage that allows for an easy 
implementation and tuning, if a sufficient number of sensors and actuators exist. It is also highly reliable.  
 
For highly interacting processes, a decoupling control is usually preferred instead of a decentralized algorithm. 
Decoupling is a procedure that reduces multivariable interactions and sets the premises for an improved design of the 
decentralized control. The mathematical procedure to decouple a MIMO system consists in a transformation of the 
original transfer function matrix of the process into a diagonal one, achieved by using an additional controller, also 
called a decoupler, which is designed in order to compensate for process interactions. Then, for the resulting pseudo-
plant, consisting of the original model of the multivariable process and the decoupler, SISO techniques can directly be 
used in designing the controllers. 
 
The quadruple tank process, considered as a case study in this paper, is a multivariable process with a multivariable zero 
located in the right half plane. For this particular process, a decentralised, decoupling and multivariable IMC strategy 
have been proposed [3], however the experimental results obtained showed the necessity of more complex control 
algorithms when stringent performance is envisaged and coupling, as well as RHP zeros need to be tackled efficiently. 
For this particular process, both decentralized and decoupling controls achieved poor performance for disturbance 
rejection tests, which motivated the application of the more advanced IMC control and even a possible future work 
regarding model predictive control.  
 
The purpose of this paper is to design a simple control algorithm that is based on combining fractional order controllers 
with a decentralised as well as decoupling approach that allow for a SISO interpretation of the controller tuning, but that 
can also achieve improved performance compared to the multivariable IMC control (MIMO IMC). The use of fractional 
order controllers is expected to enhance the performance of the closed loop system and increase the robustness of the 
system [4,5]. Several fractional order techniques have been proposed in literature for controlling multivariable 
processes, such as the extension of the CRONE algorithm [4], MIMO-QFT robust synthesis methodology combined 
with CRONE control [5], sliding mode control based on the selection of a special fractional-order sliding variable [6] or 
fractional PID formulated as an H∞

 

 problem with a controller structure constraint [7]. Contrary to these multivariable 
fractional order control algorithms, the present paper proposes simpler approaches, also based on robust fractional order 
control algorithms that enable the use of SISO control techniques for multivariable processes. 

Alternative designs of a fractional order controller for multivariable processes 
 
Decentralised approach 
 
The decentralised approach in controlling MIMO systems consists in a proper selection of the input-output pairings, 
with the purpose of dividing the initial control problem into several SISO control loops, while aiming to reduce the 
amount of interaction. The first step in the decentralised approach consists in a RGA analysis of the multivariable 
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 process that allows for a proper pairing of the input-output signals. The next step consists in the design of the individual 

fractional order PI controllers for each input-output pairing by neglecting the effect of the interaction loop. The transfer 
function of the fractional order PI controller, proposed in this paper, is given as: 
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with ( )20÷∈µ the fractional order. To tune the fractional order PI controller, three performance specifications are 
imposed: a) a certain gain crossover frequency - gcω , b) a phase margin - mϕ - of the open loop system, denoted Hd

 

(s) 
and c) a robustness condition to gain variations. Considering that the open loop transfer function is written as: 

)s(H)s(H)s(H PPIFOd −=                  (2) 
 
where Hp

 

(s) is the process transfer function, the tuning of the controller is done based on the following set of equations 
[6,7,8]:  
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where K is the real part and L is its imaginary part of the process HP gcjω( ). To simplify the computation of the 
fractional order PI controller parameters, the values for ki µ and  are determined graphically using (4) and (5) [6,7,8], 
while kp
 

 is then computed using (3).  

Decoupling approach 
 
In case of a highly coupled MIMO system, the decentralised approach may result in poor closed loop performance due 
to the multiple input-output interactions. A decoupling solution could then be used instead. In this paper, a steady state 
decoupling is employed. Given the nxn MIMO system: 
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the steady state decoupler is the inverse of the process transfer function gain matrix in (6), denoted as #

mG . The steady 
state decoupled process is then computed as:   
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The tuning of the fractional order PI controllers is then performed for each diagonal element in the decoupled process 
GD
 

(s) using the same tuning procedure based on (3)-(5). The final multivariable FO-PI controller computed as: 
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Case study. Control strategies for non-minimum phase quadruple tank system  

 
The schematic representation of the quadruple water tanks system is given in Fig. 1. The system is a multivariable one, 
with two inputs, the voltages applied to the two pumps, denoted as Vp1(t) and Vp2(t), and two outputs, the water levels 
of Tank 2 and Tank 4, denoted as L2(t) and L4

 

(t), respectively. The model transfer function matrix was determined 
experimentally to be [3]: 
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The transmission zeros for the quadruple water tanks system are: z1=-0.26; z2= 0.07; z3= -0.06; z4= -0.05. Due to the 
positive zero z2
 

= 0.07, the system is non-minimum phase. 

 
Fig. 1. Schematic diagram of the quadruple water tanks system 

 

Based on the RGA analysis [7] ( 





−
−=Λ 49.049.1

49.149.0 ), the 1-2/2-1 pairing was selected and two FO-PI controllers are 

then computed. The following performance specifications are imposed for the two loops: 02501 .gc =ω , o
m 601 =ϕ and 

0202 .gc =ω , o
m 602 =ϕ . The resulting fractional order PI controllers, to be used in the decentralised approach are: 
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To tune the fractional order controllers for the decoupling control strategy, the decoupler was first computed as: 
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Similar performance specifications were imposed to design the fractional order controllers for the decoupling strategy, 

0201 .gc =ω , o
m 701 =ϕ and 01502 .gc =ω , o

m 602 =ϕ , in order to obtain similar closed loop performance in terms of 
overshoot and settling time. The two fractional order controllers are: 
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with the final multivariable FO-PI controller determined using (8). 
  
To compare the results, a multivariable IMC strategy has been designed according to [3], to yield similar closed loop 
performance in terms of settling time, as compared to the decentralised and decoupling fractional order control 
algorithms given by (10) and (14), respectively. The closed loop simulation results, considering step changes in the 
reference signals for the levels L2 and L4

 

, are given in Fig. 2 and 3. Since the simplified model in (9) was obtained by 
linearizing a nonlinear model around the operating point of 10cm [3], the results in Fig. 2 and 3 are regarded as nominal 
operating conditions. The decentralised and decoupling fractional order control strategies ensure no overshoot and 300 
seconds settling time. The MIMO IMC algorithm ensures the same settling time, but with an overshoot of 20%. It must 
be noted here that zero overshoot for the MIMO IMC strategy is possible to be obtained at the expense of a major 
increase in the settling time. In terms of interaction, the MIMO IMC offers the best results, however this is valid under 
the assumption of a perfect model. Among the fractional order control strategies, the decoupling approach provides 
better interaction responses than the decentralised control algorithm. 
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Fig. 2. Comparative nominal closed loop simulation 

results considering a step change in the reference signal 
for L

Fig. 3. Comparative nominal closed loop simulation 
results considering a step change in the reference signal 

for L2 
 

4 

To test the robustness of the designed controller, similar step changes in the reference signals were considered, but with 
a variation of 30% of the gains and time constants of the process in (9): 
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The closed loop simulation results are indicated in Fig. 4 and 5, for the fractional order control strategies. As noted form 
the two figures, the 30% change in the modeling parameters do not affect significantly the closed loop performance 
results. Also, the robustness of the decentralized and decoupling strategies are almost identical.  
 
Fig. 6 and 7 show the same robustness results for the MIMO IMC strategy. It can be easily observed that in the case of 
the MIMO IMC, there is a significant change in the settling time (over 500 seconds) and in the overshoot (35%). 
Overall, the proposed fractional order decentralised and decoupling strategies offer an increased robustness as compared 
to the previously proposed MIMO IMC algorithm.  
 
Previous results [3] showed that poor disturbance rejection performance was achieved when using classical integer order 
PID controllers in a decentralised or decoupling approach, which justified the application of the more advanced MIMO 
IMC control. Fig. 8 and 9 present the disturbance rejection tests, considering both the nominal conditions and modelling 
errors in (14). The simulation results show that the MIMO IMC and the decoupling fractional order controller are 
outperformed in terms of settling times by the decentralised fractional order controller. Also, the MIMO IMC is more 
oscillating with increased amplitudes. 
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Fig. 4. Comparative robust closed loop simulation results 

considering a step change in the reference signal for L2 

Fig. 5. Comparative robust closed loop simulation results 
considering a step change in the reference signal for Lfor the 

proposed fractional order control strategies 
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Fig. 6. Comparative robust closed loop simulation results 

considering a step change in the reference signal for L2 

Fig. 7. Comparative robust closed loop simulation results 
considering a step change in the reference signal for Lfor the 

MIMO IMC algorithm 
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Fig. 8. Comparative disturbance rejection tests considering 

nominal conditions and modelling errors  
Fig. 9. Comparative disturbance rejection tests considering 

nominal conditions and modelling errors 
 
 
To evaluate the disturbance rejection tests, the following performance index was used: 
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 The computed values are given in Table 1. The computed values for the performance index in (16) show that the 

proposed fractional order control strategies outperform the MIMO IMC in terms of disturbance rejection, both under 
nominal as well as modelling errors.  
 
Control strategy Output y Output y1 2 

Nominal Modelling errors Nominal Modelling errors 
Decentralised 
fractional order 
control 

J = 16.2384 
 

J = 13.9362 J = 19.2701 
 

J = 16.0638 

Decoupling fractional 
order control 

J = 27.5339 
 

J = 21.9440 J = 40.8953 
 

J = 32.5505 

MIMO IMC J = 41.0897 J = 42.8995 J = 41.0900 J = 41.9865 
Table 1. Performance index for the disturbance rejection tests 
 

Conclusions 
 

This paper presented two alternative solutions for controlling non-minimum phase systems and significant coupling. The 
previous traditional decentralised and decoupling strategies applied for the presented case study, the quadruple tank system, 
have shown the necessity for an advanced control solution, such as the MIMO IMC. The alternative solutions proposed in 
this paper consist in decentralised and decoupling fractional order control strategies. The simulation results prove that the 
proposed multivariable fractional order control algorithms outperform the MIMO IMC solution previously proposed, in 
terms of closed loop performance, disturbance rejection, both under nominal conditions, as well as modelling errors. Further 
research includes the implementation of the designed controllers on the actual plant and the validation of the results 
considering real life experiments. 
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