
 
 

 
 

Silicon-nitride waveguides for on-chip Raman spectroscopy 
 
Ashim Dhakal*a,b, Pieter Wuytensa,b,c,, Frederic Peyskens a,b, Ananth Z Subramanian a,b, Nicolas Le 

Thomas a,b, Roel Baetsa,b 

a Photonics Research Group, INTEC-department, Ghent University - imec 
bCenter for Nano- and Biophotonics, Ghent University 

cDepartment of Molecular Biotechnology, Ghent University, Ghent, Belgium 
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium 

 
*Email: ashim.dhakal@intec.ugent.be 

ABSTRACT   

The evanescent tail of the guided modes can efficiently excite Raman active molecules located in the cladding of a 
waveguide. Similarly, a significant fraction of the total emitted Stokes power is evanescently coupled to the same mode. 
Further, the enhancement effects inherent to the waveguide, alongside with the long interaction length, lead to an 
increased light-matter interaction, resulting in a higher sensitivity as required by spectroscopic applications, especially in 
the context of Raman spectroscopy. We calculate the spontaneous Raman scattering efficiency as a function of silicon-
nitride strip waveguide dimensions and show that under typical conditions, the overall efficiency is approximately two 
orders of magnitude higher than in confocal configuration in the free space. We also report the experimental 
demonstration of the use of silicon-nitride based photonic waveguides in a lab-on-a-chip context for Raman 
spectroscopy. To the best of our knowledge, this is the first demonstration of Raman spectroscopy using photonic 
waveguides.  
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1. INTRODUCTION  
 

Raman spectroscopy is a key technology for the detection of a wide variety of atoms and molecules in applications 
ranging from physics and chemistry to biology and environmental sciences. As compared to many other types of sensors 
Raman spectroscopic techniques have the advantage that their selectivity is based on the specific spectrum rather than 
from chemical affinity of a given molecule to a functionalized surface. In spite of these advantages Raman spectroscopic 
techniques often require bulky or expensive instrumentation. If key parts of the optical functionality could be integrated 
on a chip, the route would be opened towards miniaturized low cost systems, with the potential of massive parallelism 
and multiplexing [1, 2].  

Silicon photonics technology makes use of the technologies available in an advanced CMOS fab to fabricate photonic 
integrated circuits. Since silicon is only transparent above 1.1 µm, the technology is not readily suitable for applications 
requiring shorter wavelengths, as is often the case in biology. But by making use of silicon-nitride (Si3N4) waveguide 
layers instead of silicon, the technology can be extended to the entire visible and near infrared wavelength range. This is 
particularly relevant for Raman spectroscopy and fluorescence spectroscopy.  

The value of using optical chips for Raman sensing is beyond the miniaturization, cost and reliability advantage 
associated with the use of mature wafer-scale technologies. There are also performance advantages. One important 
element is the fact that the high refractive index contrast in a Si3N4 waveguide helps to enhance the electric field strength 
of a guided mode for a given mode power [3]. This is beneficial both for the absorption rate of the guided mode by a 
particle seen by the enhanced field and for the enhancement and coupling of light emitted by a particle coupled to the 
guided mode. Compared to free-space spectroscopy, the enhancement effects inherent to the waveguide, alongside with 
the long interaction length, lead to an increased light-matter interaction, resulting in a higher sensitivity as required by 



 
 

 
 

spectroscopic applications, especially in the context of Raman spectroscopy [4]. This enhancement can be boosted 
further through either resonant cavity enhancement and/or plasmonic enhancement by means of metallic nanostructures 
in the vicinity of the waveguides [5]. Furthermore light coupled to a single waveguide mode has a perfect spatial 
coherence and can in principle be decomposed in its spectral components with unlimited resolution.  

In this paper, we summarize the technological, theoretical and experimental results to realize Raman sensors based on 
Si3N4 photonic waveguides. In section 2 we shortly describe the key optical properties, such as waveguide-loss and the 
background luminescence of the Si3N4 material used in our research. Section 3 summarizes the theoretical results on the 
expected overall efficiency of excitation and collection for molecules dispersed uniformly in the water cladding of the 
single mode waveguide with a single mode Si3N4 waveguide. In section 4 we report the key experimental results. 

 

2. SILICON-NITRIDE WAVEGUIDE PLATFORM AND ITS SCATTERING UNDER RAMAN 
MICROSCOPE 

 
The wavelength range of 750-1200 nm is of specific interest in bio-sensing applications since it is delimited by the 
protein absorption at shorter visible wavelengths (< 750 nm) and water absorption towards longer wavelength (>1200 
nm) [24]. Due to this reason, in this band the photo-damage by lasers to living cells is minimal. Although silicon-on-
insulator (SOI) technology is a well-established technology making use of the tools available in an advanced CMOS fab 
to fabricate photonic integrated circuit, silicon is only transparent above 1.1 µm. Hence, the technology is not readily 
suitable for applications operating in the 750-1200 wavelength range requiring shorter wavelengths. But by making use 
of Si3N4 waveguide layers instead of silicon, the technology can be extended to the entire visible and near infrared 
wavelength range. This is particularly relevant for Raman spectroscopy and fluorescence spectroscopy.  

Si3N4 is a versatile high index contrast platform that fulfills the above requirements for its transparency at both visible 
and near infrared wavelengths [6]. Besides it has low thermo-optic coefficient making it less sensitive to ambient 
fluctuations than for example silicon. These advantages make Si3N4 a practical candidate for low-cost photonic devices 
and ultimately help in integrating the key functionalities required for lab-on-a-chip platform operating in the visible-NIR 
spectral window, especially Raman spectroscopic system on a chip level. Towards these ends, we have developed unclad 
low-loss Si3N4 singlemode waveguides with loss below 1.5 dB/cm [6] in the wavelength range 750-1000 nm.  

Furthermore, as studied with a confocal Raman microscope operating at 532 nm the Raman scattering and 
autofluorescence  of the Si3N4 material itself is low enough, thus enabling spectroscopy with their use. Figure 2 shows 
the spectrum of the waveguide stack (Figure 1, with h = 220 nm, w=slab) as acquired with a confocal Raman 
microscope, with pump wavelength at 532 nm.  We also see strong peaks at 520 cm-1 and 960 cm-1 due to silicon. We can 
also see a broad Raman emission in the range 2100-2400 cm-1 with a peak around 2330 cm-1. Z-scan with the confocal 
microscope and further experiments with the waveguides reveals that they are from silicon-nitride material as will be 
discussed in section 4.   

 
 

              
Figure 1: Cross section view of Si3N4 waveguide discussed in this article. Typically we use h=220 nm and w= 700 nm. 



 
 

 
 

 

 
Figure 2: A confocal Raman z-scan of a 220 nm silicon-nitride top layer on 2.4 µm silicon dioxide, deposited on a silicon-substrate 
shows the Raman contributions of the Si3N4. On the silicon substrate (lowest curve), we see the well-known silicon Raman peaks at 
520 cm-1 (satured)  and 960 cm-1. When moving up in the material stack, we can identify specific Raman contributions of the silicon-
nitride: a broad Raman emission in the range 2100-2400 cm-1 with a peak around 2330 cm-1. These peaks were not present in a silicon 
dioxide–silicon material stack, confirming they originate from the silicon-nitride (data not shown).  
 The spectra presented are offset for clarity, and were measured using a commercial confocal Raman microscope (WITec) with a 532 
nm laser, focused through a 0.9 NA air objective with 20 mW power on sample and a 60 second integration time. 

   

3.  COLLECTION EFFICIENCY OF SPONTANEOUS RAMAN SIGNAL 
 

  Recently, we investigated the scattering efficiency of a particle located in the vicinity of a channel waveguide for 
several geometries [4]. We theoretically determined the overall efficiency (η) of (Raman) scattering from a guided mode 
and subsequent emission coupled back to the fundamental mode (both TE and TM) of a rectangular channel waveguide 
by uniformly distributed particles in its surrounding. We define η as the ratio between the emitted power collected by the 
waveguide and the incident pump power in the mode. It was shown that η is highly dependent on the mode area that 
further depends on the waveguide index and geometry. The same methodology can be applied to more popular strip 
waveguide geometry (Figure 1) for Si3N4 waveguides [5]. In this section, we numerically evaluate η as a function of the 
waveguide width (w) for several thickness (h) values for Si3N4 (n=2) waveguides in water (n=1.33) cladding.  



 
 

 
 

Assuming that the Raman emission can be modelled as the radiation of an oscillating dipole, and neglecting the Stokes 
shift, in the weak coupling regime, it can be shown that the efficiency of spontaneous Raman collection from molecules 
of scattering cross section σ and density ρ lying in the surrounding of a waveguide into a mode of a channel waveguide 
of length l is given by [4]:  

η = π 2λ0
2
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Where, ng is the group index of the mode, n=√ε is the refractive index of the surrounding medium, and ε0 is the 
permittivity of the vacuum, κ is a constant relating the polarizability and the cross-section of the molecule, Γ is a 
parameter dependent on the overlap of the mode area and the sensing area, given by: 
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We use the COMSOL finite element eigenmode solver to determine the field of the waveguide modes for several 
waveguide geometries and solve Eq. (1). For simplicity, we neglect material dispersion, pump depletion, and assume ng 
≈ neff as this will have negligible impact. As an example, we take σ=3x10-30 m2Sr-1molecule-1, as a typical cross-section 
of the dyes, ρ=1 mole/liter and calculate η for a 1 cm long waveguide. It is emphasized that the parameter values we have 
chosen do not affect the generality of our results because η scales in a simple way with these parameters as per Eq. (1).  
 
Figure 3 shows the calculated η as a function of the waveguide width (w) and height (h) for Si3N4 waveguides for bulk 
sensing for fundamental TE and TM polarized mode. The maximal efficiency, ηmax is approximately 1.5x10-8, implying 
that under ideal conditions, for 1 mW of pump power in the waveguide, 15 pW of scattered signal can be collected by the 
guided mode. It is to be noted that the equivalent efficiency in a free-space confocal microscope system using 
diffraction-limited beams would be in the order of 10-10. The efficiency is maximal near the cutoff widths and decreases 
sharply before becoming almost constant for wider widths.  
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Figure  3: Efficiency of Raman signal collection for the fundamental TE and TM mode of Si3N4 strip waveguides [5] as a function of 
waveguide widths for several heights (h) of the strip. 



 
 

 
 

4. EXPERIMENTAL  
The experimental setup is illustrated in figure 4.  A tuneable Ti-Sapphire CW laser (λ=725-965 nm) was used as the 
pump source. For the experiments, a wavelength of 785 nm is coupled to the waveguide by end-fire coupling using an 
aspheric lens of effective focal length 8 mm (NA=0.5). The co-propagating Raman signal (Stokes) generated by the 
pump and collected by the waveguide is then collimated via another lens of focal length 6.5 mm (NA=0.5) towards an 
edge filter, with the edge wavelength at 790 nm  to block any stray pump light leaking into the spectrometer.  The Raman 
signal is then focused to a single-mode optical-fibre using a parabolic mirror of 15 mm effective focal length (NA=0.2) 
and measured using a commercial spectrometer (Avantes SensLine). 
 
 
 

 
Figure 4: The schematic of experimental setup. The pump laser at 785 nm is focused at the waveguide (WG) facet using an aspheric 
lens (L1). The co-propagating spontaneous Raman signal from the waveguide is coupled to the single-mode fibre (SMF) using another 
aspheric lens (L2) via a long pass edge filter (EF).  
 
 
4.1 Background luminescence from the waveguides 

The emission spectrum recorded with a setup depicted in figure 5 when a 785 nm laser is coupled to a 7 mm long 
waveguide (w=700 nm , h=220 nm) is shown in figure 5. The pump power was set to about 50 mW while the coupling 
loss is estimated to be approximately 10 dB per facet. A broad Raman emission in the range 2100-2400 cm-1 with a peak 
around 2330 cm-1 can be readily observed. Based on the observation of the peak with a commercial confocal microscope 
pumped at laser 532 nm, as described in section 2, this peak can be concluded to be from the Si3N4 material that forms 
the waveguide core. Another feature of the spectrum is the broad luminescence in the range below 1200 cm-1. From our 
preliminary studies on how it varies with the width of the waveguide, we suspect this is a predominantly (auto) 
fluorescence due to silica under-cladding. Our suspicion that this is not a Raman signal is also corroborated by the fact 
that it is not observed when we used confocal microscope with pump at wavelength 532 nm. However, in addition to 
being broad, this part of the background spectrum remains practically constant for a given pump power, thus not posing a 
very serious difficulty for Raman spectroscopy. This must be mitigated, however, for Raman spectroscopy with a longer 
integration time.  
 
4.2 Observation of Raman spectra using single mode silicon-nitride waveguides 

We use a Si3N4 waveguide (w= 700 nm, h= 220 nm) on top of a 2.4 µm silica cladding on a silicon substrate as our 
sensing platform (Figure 1) [5].  A spiral waveguide (1 cm in length) is used as the sensing region for the experiment 
(figure 6). The spiral forms the bottom of a rectangular reservoir defined lithographically using SU8.  The laser power is 
set to 150 mW, and coupled (coupling loss: ~10 dB/facet) to the waveguide. For Raman measurements, two different 
concentrations of 7 µM and 33µM of  Rhodamine 6G (R4127, Sigma Aldrich) dye solution in DI water were prepared. A 
3 µL drop of the 7 µM solution was first dispensed in the reservoir containing the waveguide spiral and covered with a 
thin glass coverslip to prevent water evaporation, and the Raman spectra is measured. Then, 33 µM solution was then 
added on the same reservoir and measured (estimated concentration now being about 20 µM). 
  
  
The measured spectra are shown in figure 7. A noticeable feature of the spectra is that they have the strongest peak at 
2330 cm-1 corresponding to the Si3N4 waveguide material, which was verified by z-scan using a commercial confocal 



 
 

 
 

Raman microscope, as described in section 2.  A broad fluorescence background starting from about 1800 cm-1 and 
peaking up as we go lower in wavenumbers can also be seen in the spectra. This is due to auto-fluorescence of the silica 
under cladding, also described in section 4.1. The peaks, notably at 1360 cm-1, 1515 cm-1 and 1600 cm-1 are due to the 
dye, which can be confirmed using the data provided by the manufacturer [7]. In addition to that we also observed the 
signal strength dependency on the concentration of the dye solution, with higher concentration (appox. 20 µM) yielding 
stronger signal than 7 µM solution. 

 

 
 
Figure 5: The luminescence spectrum recorded from a 7 mm waveguide using the setup described in figure 4.  The laser power was set 
to 50 mW and estimated coupling loss is about 10 dB per facet. We can clearly see a broad Raman emission in the range 2100-2400 
cm-1 with a peak around 2330 cm-1. This peak is also observed with commercial confocal microscope, as described in section 2. The 
broad luminescence below 1200 cm-1 is a predominantly due to silica undercladding. 
 
 

     
Figure  6: The spiral used for measurement tinted with R6G dye used as Raman active molecules.  
 

5. CONCLUSIONS  
We experimentally demonstrated for the first time, to the best of our knowledge, the measurement of Raman signal using 
single mode integrated optical waveguides whereby both the pump and the collection happen through the waveguide 
mode. We exploit the enhancement of light scattering due to the evanescent tail of the waveguide modes. We measured a 
Raman signal of approximately 300 counts/min for a 7 µM concentration of Rodhamine 6G dye for a pump power of 150 
mW and 10 dB coupling loss per facet. 
 



 
 

 
 

 
Figure 7: Measured Raman spectrum for 7uM (Red) and 20uM (Blue) concentration of rhodamine 6G dye in water. The peaks at 1360 
cm-1, 1515 cm-1 and 1600 cm-1 correspond to that of dye while the at peak 2330 cm-1 corresponds to the Si3N4 used as the waveguide 
core material. The green curve is without dye, with lower (50mW) pump power. The Raman spectrum of the dye, as provided by the 
manufacturer [7] is also displayed on the inset for comparison.  
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