The Social Relations Model The lavaan ecosystem

Lara Stas ¹ Felix Schönbrodt ² Tom Loeys ¹

¹Department of Data Analysis, Ghent University, Belgium

²Ludwig-Maximilians-Universität München

(日)

Theoretical framework Design Analysis

Outline

The Social Relations Model

- Theoretical framework
- Design
- Analysis

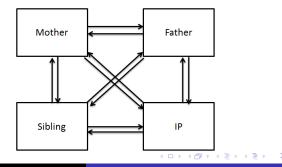
2 Description dataset

- 3 fSRM: A user-friendly R-package
 - The pop-up window
 - Single group analyses: clinical group
 - Group comparison

< 2 > < 2 >

< 17 ▶

Theoretical framework Design Analysis

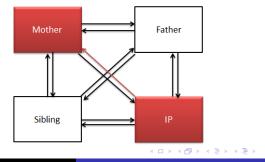

The SRM components

Example: Case Study: X, 14 years old

- Aggressive problems in family context
- No problems at school
- Disturbed family dynamics?

Network of Relationship Inventory (Furman & Buhrmester, 1985):

- Negative interaction subscale


Theoretical framework Design Analysis

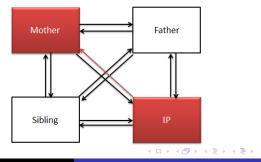
The SRM components

Example: Case Study: X, 14 years old

- Aggressive problems in family context
- No problems at school
- Disturbed family dynamics?

e.g. How much do you and your mother get annoyed with each other's behavior?

Theoretical framework Design Analysis


The SRM components

Example: Case Study: X, 14 years old

- Aggressive problems in family context
- No problems at school
- Disturbed family dynamics?

Result NRI :

X reports a lot of negativity in relation to his mother

Theoretical framework Design Analysis

The SRM components

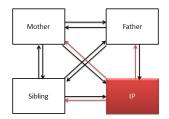
X reports about negativity in relation to his mother.

Actor effect:

How much negativity does this child report in

general?

Partner effect


How negative is this mother perceived?

Relationship effect

Is it specific to their relationship?

• Family effect

Is it something specific to the family culture?

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Theoretical framework Design Analysis

The SRM components

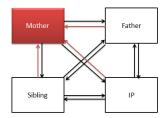
X reports about negativity in relation to his mother.

Actor effect:

How much negativity does this child report in

general?

Partner effect


How negative is this mother perceived?

Relationship effect

Is it specific to their relationship?

• Family effect

Is it something specific to the family culture?

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Theoretical framework Design Analysis

The SRM components

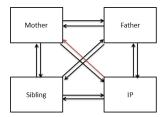
X reports about negativity in relation to his mother.

Actor effect:

How much negativity does this child report in

general?

Partner effect


How negative is this mother perceived?

Relationship effect

Is it specific to their relationship?

• Family effect

Is it something specific to the family culture?

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Theoretical framework Design Analysis

The SRM components

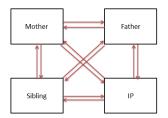
X reports about negativity in relation to his mother.

Actor effect:

How much negativity does this child report in

general?

Partner effect


How negative is this mother perceived?

Relationship effect

Is it specific to their relationship?

Family effect

Is it something specific to the family culture?

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Theoretical framework Design Analysis

The SRM is perfectly suitable for

Perform case studies

! need normative sample

(e.g. What are abnormal dynamics within this particular family?)

Examining one group

(e.g. Do mothers differ in terms of negativity?)

Comparing two groups

(e.g. Is there a difference between mothers with or without a child with externalizing problem behavior?)

Theoretical framework Design Analysis

Additional analyses

Additional questions that can be answered:

 At the individual level of analyses: What you give is what you get?

(i.e. correlation between actor and partner effect of the same person)

• At the dyadic level of analyses:

Are there bidirectional effects?

(i.e. correlation between the two relationship effects of the same dyad)

• Within generations:

Are there intragenerational similarities?

(i.e. correlation between actor or partner effects of the individuals of the same generation)

(4月) (4日) (4日)

Theoretical framework Design Analysis

Confirmatory Factor Analysis

SRM components are specified as latent variables in a CFA.

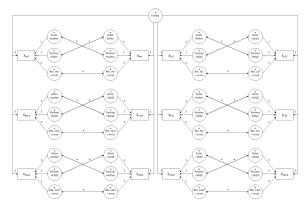


Figure : Boxes represent observed dyadic measurements, circles latent variables. Parameters that are fixed are indicated by '1', free parameters by an asterisk. Every indicator is connected with the corresponding latent variable by a single headed arrow. Double headed arrows represent reciprocities.

(日)

Main goal

Family researchers often find it hard to perform the analyses

Theoretical framework

Design

Analysis

<pre># Family effect: TR =- tre_f_anx + 1+c_m_anx + 1+c_m_anx + id_c_anx + 1+d_m_anx + 1+d_m_anx + im_canx + 1+m_f_anx + 1+m_m_anx + iv_c_anx + 1+m_f_anx + 1+m_m_anx # Actor effects: Actor = id_c_f_anx + 1+c_m_anx + 1+c_m_anx</pre>	<pre># Dyadic reciprocity: R.c.f ~~ R.f.c R.c.g ~~ R.m.c R.c.g ~~ R.m.c R.f.g ~~ R.m.f R.f.g ~~ R.m.f R.f.g ~~ R.g.f R.f.g ~~ R.g.f</pre>	B. f. m =mann.B. f. m B. f. y =mann.B. f. y = 1 B. f. y =mann.B. f. y = 1 B. f. f. =mann.B. h.m. y = 1 B. f. y =mann.B. h.m. y = 1 B. y, y =mann.B. h.y, y = 1 B. y, f. =mann.B. h.y, y = 1 B. y, f. =mann.B. h.y, f. = 1 B. y, m =mann.B. h.y, m = 1 B. y, m =mann.B. h.y, m = 1 B. y, m =mann.B. h.y, m = 1 B. y, m =mann.B.y, m = 1 B. y, m =mann.B. h.y, m =mann.B. h.y, m = 1 B. y, m =mann.B. h.y, m =mann.B. h.y, m = 1 B. y, m =mann.B. h.y, m =mann.B. h.y, m = 1 B. y, m =mann.B. h.y, m =mannn.B. h.y, m =mann.B. h.y, m =mann.B.
		<pre># set means of observed variables to zero c_f_anx = 0*1 c_W_anx = 0*1 c_W_anx = 0*1 f_c_anx = 0*1 f_c_anx = 0*1 f_c_anx = 0*1 f_c_anx = 0*1 R_f_anx = 0*1 R_f_anx = 0*1 Y_f_anx = 0*1 Y_f_anx = 0*1 # set constraints on means for identifiabil means.Ac + _means.Acf + _means.Acm + _means.Ry == 0 means.R_c + _means.R_c + _means.R_c + _means.R_c + _means.R_c + _means.R_c + _means.R_c + _means.R_c + _means.R_c + _means.R</pre>

Main goal

Theoretical framework Design Analysis

Family researchers often find it hard to perform the analyses

# Partner effects: f c_y_anx ~ 0*c_y_anx c_f_ # Partner effects: f c_onx ~ 0.*f_c_anx	t means of observed variables to zero
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>anx ~ 0+1 anx ~ 0+1 ans A.y = 0 ns.P.c + .means.A.f + .means.P.m + ans.P.y = 0 ns.P.c + .means.P.f + .means.P.c.y == 0 ns.P.c.f + .means.P.c.m + .means.P.y == 0 ns.P.c.f + .means.R.c.m + .means.P.y == 0 ns.P.c.f + .means.R.m.f + .means.P.y = 0 ns.P.c.f + .means.R.m.f + .means.P.y = 0 ns.P.c.f + .means.P.g.f = .means.P.y f == 0 ns.P.c.f + .means.P.f = .means.P.y f == 0 ns.P.c.f + .means.P.f = .means.P.y f == 0</pre>

Main goal

Theoretical framework Design Analysis

Family researchers often find it hard to perform the analyses

ISRM(DV ~ actor.1d,] R.c. R.c.m - 1. c.m.anx	partner.id family.id, m	leans = 1, data = dat) $y_{c_anx} \sim 0.41$	
With fSRM:			
		R.f.m - means.R.f.m R.f.y- means.R.f.y-1 R.m.c - means.R.f.y-1 R.m.f - means.R.m.c-1 R.m.f - means.R.m.y-1 R.y.c - means.R.m.y-1 R.y.c-1 R.y.c-1 means.R.y.c-1 R.y.c-1 R.y.m - means.R.y.f-1 R.y.m - means.R.y.f-1	

R.y.f -~ 1* y_f_anx R.y.m -~ 1* y_m_anx

Generalized reciprocity: A.c ~~ P.c A.f ~~ P.f A.m ~~ P.m

A.y ~~ P.y

.means.R.c.y + .means.R.f.y + . ◀ □ ▶ ◀ 🗇 ▶ ◀ 🚊 ▶ ◀ 🖻 ▶
 The Social Relations Model
 Theoretical framework

 Description dataset
 Design

 fSRM: A user-friendly R-package
 Analysis

fSRM will help!

- User-friendly R-package
- Based on lavaan (Rosseel, 2012)
- Easily insert, transform and analyze data in R
- Goes beyond the standard SRM analyses

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Outline

The Social Relations Model

- Theoretical framework
- Design
- Analysis

2 Description dataset

- 3 fSRM: A user-friendly R-package
 - The pop-up window
 - Single group analyses: clinical group
 - Group comparison

< 17 ×

★ E > < E >

Study of Eichelsheim et al. (2001)

- Patterns of negativity (NRI)
- Families with and without adolescent with externalizing problem behavior
- Group comparison clinical (n = 120) and nonclinical (n = 153) sample
- Simulated dataset

The pop-up window Single group analyses: clinical group Group comparison

Outline

The Social Relations Model

- Theoretical framework
- Design
- Analysis

2 Description dataset

- ISRM: A user-friendly R-package
 - The pop-up window
 - Single group analyses: clinical group
 - Group comparison

< 2 > < 2 >

< 17 ▶

The pop-up window Single group analyses: clinical group Group comparison

R-package

fSRM: A user-friendly R-package for SRM analyses

Easily insert your data in R

76 Inserting and transforming your data	
Read in your datafile	
Select CSV file	
Select TXT file	
Select SPSS File	
Do you want to transform your data from wide to long format?	
Transform my data	
Which SRM labels do you prefer in the output?	
Family effect? Actor/Perceiver effect?	FE
Partner/Target effect?	P
Relationship effect?	R
Confirm output format	1.5
ОК	
Please deal with missing data in an appropriate way before using these function	ons.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The pop-up window Single group analyses: clinical group Group comparison

fSRM: A user-friendly R-package for SRM analyses

Easy to transform a dataset to long format

76 Inserting and trans	forming your data	
Read in your datafile	Select CSV file Select TXT file Select SPSS File	
Do you want to transfe	orm your data from wide to long format?	
Do you want to transit	Transform my data	
	This off the second	
Which SRM labels do y	rou prefer in the output?	
Family effect?		FE
Actor/Perceiver effect		A
Partner/Target effect?		P
Relationship effect?		R
	Confirm output format	
	ок	
	OK	
Please deal with missing a	data in an appropriate way before using these functio	nu.

R-package

< 一型

∃ ► < ∃ ►</p>

The pop-up window Single group analyses: clinical group Group comparison

fSRM: A user-friendly R-package for SRM analyses

Easy to transform a dataset to long format

7⁄2 Inserting and transforming your data	
Read in your datafile Select CSV file Select TAT file Select SPSS File	
Do you want to transform your data from wide to long format?	
Transform my data	
Which SRM labels do you prefer in the output?	
Family effect?	FE
Actor/Perceiver effect?	A
Partner/Target effect?	P
Relationship effect?	R
Confirm output format	
OK	
Please deal with missing data in an appropriate way before using these function	912.

R-package

	family_ID	mfanx	mcanx	myanx
1	1	1.000000	1.500000	1.500000
2	2	2.166667	2.000000	2.166667
3	3	1.166667	1.333333	1.000000

	family.id	variable	value	actor.id	partner.id	ind
1	1	mfanx	1.000000		f	anx
2	2	mfanx	2.166667		f	anx
3	3	mfanx	1.166667	n	f	anx

...

211	3	mcanx	1.333333	m	c	anx
210	2	mcanx	2.000000		c	anx
209	1	mcanx	1.500000	m	c	anx

417	1	nyanx	1.500000	n	у	anx
418	2	nyanx	2.166667	•	У	anx
419	3	nyanx	1.000000		У	anx

The pop-up window Single group analyses: clinical group Group comparison

fSRM: A user-friendly R-package for SRM analyses

Easy to transform a dataset to long format

76 Inserting and transforming your data	
Read in your datafile Select CSV file Select TXT file Select SPSS File	
Do you want to transform your data from wide to long format?	
Transform my data	
Which SRM labels do you prefer in the output?	
Family effect?	FE
Actor/Perceiver effect?	A
Partner/Target effect?	P
Relationship effect?	R
Confirm output format	in the second se
OK	
Please deal with missing data in an appropriate way before using these funct	ions.

R-package

74 Transformation of the dataset						
If present, enter the variable name that contains the identific	ations of					
the different families.						
the different groups.						
Specify the column numbers of the dyadic measure						
specify the column numbers of the dyadic measure	ements in your original o	leteset				
E.g. variables 1 until 9, 11, 13 and 15 are entered as 1:9,	11, 13, 15					
Based on the variable names of the dyadic measurements, de	efine the position of the	characters of				
the rater in the dyadic measurement?	From	To				
the rate in the system content.						
the person being rated in the dyadic measurement?	From	To				
	From	_				
the indicators (if present)	From	To				
OK	Cancel					

< 17 ▶

A B F A B F

Lara Stas The Social Relations Model

The pop-up window Single group analyses: clinical group Group comparison

fSRM: A user-friendly R-package for SRM analyses

• The labels in the output can be customized

7% Inserting and transforming your data							
Read in your datafile	Select CSV file Select TXT file Select SPSS File						
Select SPSS File Do you want to transform your data from wide to long format? Transform my data							
Which SRM labels do yo	u prefer in the output?						
Family effect?		FE					
Actor/Perceiver effect?		A					
Partner/Target effect?		P					
Relationship effect?		R					
_	Confirm output format						
ок							
Please deal with missing da	ata in an appropriate way before using these function.	1					

R-package

B 1 4 B 1

```
The Social Relations Model
Description dataset
fSRM: A user-friendly R-package
Group comparison
```

- # Load the package install.packages("fSRM") library("fSRM")
- # Load data and select clinical group data(two.groups) clinical <- subset(two.groups, group==1)</pre>

```
# Run the basic SRM analysis
fSRM.1gr <- fSRM(neg1/neg2 ~ actor.id * partner.id |
family.id, data = clinical)</pre>
```

- Only SRM variance are requested
- Two indicators ⇒ SRM relationship partitioned from error

(日)

	The Social Re Descri fSRM: A user-frienc	iption dataset	Single	p-up window group analyses: clinical group comparison
	Model summary: Tavaan (0.5-12) converged normally after 6 Number of observations Estimator Minimum Function Test Statistic Degrees of freedom P-value (chi-square)		_	Information about the model fit
1	Model Fit: Ch12 cdf=1133 = 110.72, p = 0.543 CFI = 1 TL / NHT = 1.011 RMSEA = 0 [0;0.044]; Test of close fit: p(d = 0 Variance decomposition:	lata true value == 0.979		• Good fit according to the χ^2 (p > 0.05), CFI and RMSEA Information about the SRM
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ccccc} p, v_3 ue \ c1, lower \ c1\\ 0, 230 & -0.016 \\ 0, 020 & -0.016 \\ 0, 002 & 0.016 \\ 0, 002 & 0.051 \\ 0, 000 & -0.045 \\ 0, 021 & 0, 012 \\ 0, 022 & 0, 012 \\ 0, 066 & -0.044 \\ 0, 022 & 0, 012 \\ 0, 654 & -0.048 \\ 0, 000 & 0, 288 \\ 0, 000 & 0, 288 \\ 0, 000 & 0, 108 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 018 \\ 0, 020 & 0, 028 \\ 0, 000 & 0, 0.999 \\ 0, 187 & -0, 038 \\ 0, 038 & -0, 014 \\ 0, 004 & 0, 027 \\ 0, 038 & -0, 014 \\ 0, 004 & 0, 071 \\ 0, 001 & 0, 071 \\ 0, 0$	upper 0.054 0.165 0.226 0.062 0.063 0.143 0.126 0.147 0.147 0.385 0.341 0.385 0.385 0.350 0.382 0.350 0.350 0.355 0.222 0.255	variances

0.325

0,197 0,065 3,030 0,002 0,070

21 R.MO.FA ~~ R.MO.FA

・ロト・日本・日本・日本・日本・日本

120

The pop-up window Single group analyses: clinical group Group comparison

SRM with roles (latent) (Roles: C1, C2, FA, MO ; DVs = neg1 neg2) :

Model summary:

lavaan (0.5-12) converged normally after 65 iterations

Number of observations

Estimator	ML
Minimum Function Test Statistic	110.720
Degrees of freedom	113
P-value (Chi-square)	0.543

Model Fit:

Crl2 (df=113) = 110.72, p = 0.543 Crl = 1 TLI / NNFH = 1.011 RMSEA = 0 [0;0.044]; Test of close fit: p(data | true value == .05) = 0.079

Variance decomposition:

component	estimate	se	z	p.value	ci.lower	ci.upper
1 FE ~~ FE	0.019	0.018	1.058	0.290	-0.016	0.054
2 A.C1 ~~ A.C1	0.086	0.040	2.131	0.033	0.007	0.165
3 A.C2 ~~ A.C2	0.138	0.045	3.090	0.002	0.051	0.226
4 A.FA ~~ A.FA	0.010	0.026	0.385	0.700	-0.042	0.062
5 A.MO ~~ A.MO	0.009	0.028	0.321	0.749	-0.045	0.063
6 P.C1 ~~ P.C1	0.078	0.034	2.306	0.021	0.012	0.143
7 P.C2 ~~ P.C2	0.061	0.033	1.836	0.066	-0.004	0.126
8 P.FA ~~ P.FA	0.079	0.035	2.294	0.022	0.012	0.147
9 P.MO ~~ P.MO	0.014	0.032	0.448	0.654	-0.048	0.076
10 R.C1.C2 ~~ R.C1.C2	0.507	0.114	4.435	0.000	0.283	0.731
11 R.C1.FA ~~ R.C1.FA	0.234	0.077	3.038	0.002	0.083	0.385
12 R.C1.MO ~~ R.C1.MO	0.275	0.085	3.230	0.001	0.108	0.441
13 R.C2.C1 ~~ R.C2.C1	0.204	0.091	2.243	0.025	0.026	0.382
14 R.C2.FA ~~ R.C2.FA	0.177	0.076	2.327	0.020	0.028	0.327
15 R.C2.MO ~~ R.C2.MO	0.329	0.087	3.779	0.000	0.159	0.500
16 R.FA.C1 ~~ R.FA.C1	0.225	0.064	3.514	0.000	0.099	0.350
17 R.FA.C2 ~~ R.FA.C2	0.078	0.059	1.319	0.187	-0.038	0.195
18 R.FA.MO ~~ R.FA.MO	0.169	0.072	2.360	0.018	0.029	0.310
19 R.MO.C1 ~~ R.MO.C1	0.109	0.063	1.731	0.083	-0.014	0.232
20 R.MO.C2 ~~ R.MO.C2	0.218	0.075	2.901	0.004	0.071	0.365
21 R.MO.FA ~~ R.MO.FA	0.197	0.065	3.030	0.002	0.070	0.325

Information about the model fit

- Information about the SRM variances
 - e.g. Some target adolescents experience more negativity in relation to his/her family members than others

・ロト ・聞 ト ・ 国 ト ・ 国 トー

C1_C2 C1_FA C1_MO C2_C1 C2_FA C2_MO FA_C1 FA_C2 FA_MO MO_C1 MO_C2 MO_FA mean General	2 2 2 2 2 3 3 3 3 2 2 3 2 2 3 2 3 2 3 2	7 10 11 14 17 14 2 2 2 2 1 1 1 1 7 7	5 10 2 8 10 1 12 11 2 12 8 11 8 11 8 0 0 0 1 9 12 8 11 8 11 8 11 8 11 12 12 12 12 12 12 11 12 11 11 11 11	Relationshi 4 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 499 49 4 51 0 57 2 49 4 48 5 48 4 69 5 69 7 67 7 62 7 62 7 56 7 56	5 55 51 49 43 51 52 52 52 31 31 33 33 34 44 54	 Relative importance of each SRM component per observed relationship averaged Generalized reciprocities
2 A.C2 3 A.FA 4 A.MO	~~ P.F	A	0.012 0.0	029 -0.474 024 0.482 023 0.555	0.635 0.630 0.579	-0.071 -0.036 -0.033	043 -0.150 060 0.414 059 NA
Dyadic estimat				onship covar	iances)	: Mean r =	191 (out of bounds Dyadic reciprocities
1 R.C1.	c2 ~~			238 0.076 3	.144	value ci.lo 0.002 0. 0.014 0.	0.386 0.739

€ 9Q@

The pop-up window Single group analyses: clinical group Group comparison

3	Relative	vari	ance d	decompos	ition:		
-							
	Eat	milv.	Actor	Partner	Relationship	Error	explained

	rainiy	ACCOL	rai chei	Refactonship	ELLO	exprameu
C1_C2	2	7	5	41	45	55
C1_FA	2	10	10	29	49	51
C1_M0	2	11	2	34	51	49
C2_C1	2	14	8	20	57	43
C2_FA	2	17	10	22	49	51
C2_M0	2	14	1	34	48	52
FA_C1	3	2	12	35	48	52
FA_C2	3	2	11	14	69	31
FA_MO	3	2	2	25	69	31
M0_C1	3	1	12	17	67	33
MO_C2	2	1	8	27	62	38
MO_FA	3	1	11	29	56	44
mean	2	7	8	27	56	44

	component	estimate	se	z	p.value	ci.lower	ci.upper	r
1 A.C	1 ~~ P.C1	0.031	0.028	1.083	0.279	-0.025	0.086	0.377
2 A.C	2 ~~ P.C2	-0.014	0.029	-0.474	0.635	-0.071	0.043	-0.150
3 A.F	A ~~ P.FA	0.012	0.024	0.482	0.630	-0.036	0.060	0.414
4 A.M	0 ~~ P.MO	0.013	0.023	0.555	0.579	-0.033	0.059	NA

Dyadic reciprocity (relationship covariances): Mean r = 0.491 (out of bounds estimates set to NA)

component	estimate	se	z	p.value	ci.lower	ci.upper	r
1 R.C1.C2 ~~ R.C2.C1	0.238 0	0.076	3.144	0.002	0.089	0.386	0.739
2 R.C1.FA ~~ R.FA.C1	0.129 0	0.053	2.456	0.014	0.026	0.232	0.563
3 R.C1.MO ~~ R.MO.C1	-0.049 0	0.053	-0.930	0.352	-0.152	0.054	-0.283
4 R.C2.FA ~~ R.FA.C2	0.139 0	0.049	2.834	0.005	0.043	0.236	NA
5 R.C2.MO ~~ R.MO.C2	0.113 0	0.058	1.934	0.053	-0.001	0.227	0.421
6 R.FA.MO ~~ R.MO.FA	0.134 0	0.051	2.660	0.008	0.035	0.233	0.736

8 Relative importance of each SRM component

Generalized reciprocities

> Not what you give is what you get

Dyadic reciprocities

(日)

The pop-up window Single group analyses: clinical group Group comparison

Relati	ve vai								
				Relationshi					
C1_C2	2		5	4					
C1_FA	2	10		2					
C1_M0	2			3					
C2_C1	2	14		2					
C2_FA	2	17							
C2_M0	2	14		3	4 48				
FA_C1	3	2	12	3	5 48	52			
FA_C2	3	2	11	1		31			
FA_MO	3	2	2						
MO_C1	3	1	12	1		33			
MO_C2	2	1	8	2	7 62	38			
MO_FA	3		11		9 56				
mean	2	7	8	2	7 56	44			
		recipr 		ctor-partner se z p		ances): ci.lower ci	i.upper	r	
1 A.C1 2 A.C2 3 A.FA	ompone ~~ P.	nt est C1 C2 - FA	imate 0.031 0.0 0.014 0.0 0.012 0.0	se zp	.value 0.279 0.635 0.630	ci.lower ci -0.025 -0.071	0.086 0.043 0.060	0.377	
1 A.C1 2 A.C2 3 A.FA 4 A.MO	compone P. P. P. P. P. P.	nt est C1 C2 - FA MO	imate 0.031 0.0 0.014 0.0 0.012 0.0 0.013 0.0 (relation	se zp 028 1.083 029 -0.474 024 0.482	value 0.279 0.635 0.630 0.579	ci.lower ci -0.025 -0.071 -0.036 -0.033	0.086 0.043 0.060 0.059	0.377 -0.150 0.414 NA	bound
1 A.C1 2 A.C2 3 A.FA 4 A.MO	compone ~ P. ~ P. ~ P. ~ P. ~ P. ~ P. ~ P.	nt est C1 C2 - FA MO rocity t to N/	imate 0.031 0.0 0.014 0.0 0.012 0.0 0.013 0.0 (relation	se z p 028 1.083 029 -0.474 024 0.482 023 0.555 onship covar	.value 0.279 0.635 0.630 0.579 iances)	ci.lower ci -0.025 -0.071 -0.036 -0.033	0.086 0.043 0.060 0.059 0.491 (0.377 -0.150 0.414 NA	
C 1 A.C1 2 A.C2 3 A.FA 4 A.MO Dyadic estima	compone ~~ P. 2 ~~ P. 2 ~~ P. 0 ~~ P. 0 ~~ P. tes se	nt est C1 C2 - FA MO rocity t to N/	imate 0.031 0.0 0.014 0.0 0.012 0.0 0.013 0.0 (relation) nt estimation	se z p 028 1.083 029 -0.474 024 0.482 023 0.555 onship covar	value 0.279 0.635 0.630 0.579 iances) z p.	ci.lower ci -0.025 -0.071 -0.036 -0.033 : Mean r = value ci.lo	0.086 0.043 0.060 0.059 0.491 (0	0.377 -0.150 0.414 NA	
0 1 A.C1 2 A.C2 3 A.FA 4 A.MO Dyadic estima	compone P. P. P. P. P. P. P. P. Component P. P. Component P. P. Component P. P. Component P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P	nt est C1 C2 - FA MO rocity t to N/	imate 0.031 0.0 0.014 0.0 0.012 0.0 0.013 0.0 (relation) nt estimu c1 0.1	se z p 028 1.083 029 -0.474 024 0.482 023 0.555 onship covar ate se 238 0.076 3	.value 0.279 0.635 0.630 0.579 iances) z p. .144	<pre>ci.lower ct -0.025 -0.071 -0.036 -0.033 : Mean r = value ci.l0 0.002 0.014 0.</pre>	0.086 0.043 0.060 0.059 0.491 (0.491 (0.089 0.26	0.377 -0.150 0.414 NA Dut of	0.73
C 1 A.C1 2 A.C2 3 A.FA 4 A.MO Dyadic estima 1 R.C1 2 R.C1 3 R.C1	compone P. P. P. P. P. P. 	nt est C1 C2 - FA MO rocity t to N/ compone R.C2. R.FA. R.MO.	imate 0.031 0.1 0.014 0.0 0.012 0.0 0.013 0.1 (relation) (relation	se z p 028 1.083 029 -0.474 024 0.482 023 0.555 onship covar ate se 238 0.076 3 129 0.053 2 049 0.053 -0	.value 0.279 0.635 0.630 0.579 iances) z p. .144 .456 .930	ci.lower ci -0.025 -0.071 -0.036 -0.033 : Mean r = value ci.lo 0.002 0.014 0.352 -0.	0.086 0.043 0.060 0.059 0.491 (0.491 (0.089 0.26	0.377 -0.150 0.414 NA Dut of upper 0.386	0.739 0.563
C 1 A.C1 2 A.C2 3 A.FA 4 A.MO Dyadic estima 1 R.C1 2 R.C1 3 R.C1	compone P. P. P. P. P. P. 	nt est C1 C2 - FA MO rocity t to N/ compone R.C2. R.FA. R.MO.	imate 0.031 0.1 0.014 0.0 0.012 0.0 0.013 0.1 (relation) (relation	se z p 028 1.083 029 -0.474 024 0.482 023 0.555 onship covar ate se 238 0.076 3 129 0.053 2	.value 0.279 0.635 0.630 0.579 iances) z p. .144 .456 .930	ci.lower ci -0.025 -0.071 -0.036 -0.033 : Mean r = value ci.lo 0.002 0.014 0.352 -0.	0.086 0.043 0.060 0.059 0.491 (0 0.491 (0 0.491 (0 0.089 0.26 0.26	0.377 -0.150 0.414 NA put of 0.386 0.232	0.739 0.563
C 1 A.C1 2 A.C2 3 A.FA 4 A.MC Dyadic estima 1 R.C1 2 R.C1 3 R.C1 4 R.C2	compone P. P. P. P. P. 	nt est C1 C2 - FA MO rocity t to N/ compone R.C2. R.FA. R.MO. R.FA.	imate 0.031 0.0 0.014 0.0 0.012 0.0 0.013 0.0 (relation (rel	se z p 028 1.083 029 -0.474 024 0.482 023 0.555 onship covar ate se 238 0.076 3 129 0.053 2 049 0.053 -0	.value 0.279 0.635 0.579 iances) z p. .144 .456 .930 .834	<pre>ci.lowr ct -0.025 -0.071 -0.036 -0.033 : Mean r = value ci.l(0.002 0. 0.014 0. 0.352 -0. 0.005 0.</pre>	0.086 0.043 0.060 0.059 0.491 (0 0.89 0.26 1.52 0.43	0.377 -0.150 0.414 NA put of 0.386 0.232 0.054	0.739 0.563 -0.283

Relative importance of each SRM component

Generalized reciprocities

Dyadic reciprocities

(日)

 Unique negativity of target adolescent towards father, and vice versa, correlate

Additional analysis:

Mean SRM components

- Intragenerational similarities
- Pairwise comparisons of actor (or partner) effects between two roles

means = T)

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Additional analysis:

- Mean SRM components
- Intragenerational similarities
- Pairwise comparisons of actor (or partner) effects between two roles
- fSRM.extra <- fSRM(neg1/neg2 ~ actor.id * partner.id |
 family.id, data = clinical,
 means = T,
 IGSIM=list(c("MO", "FA"), c("C1", "C2")))</pre>

(日) (圖) (E) (E) (E)

Additional analysis:

- Mean SRM components
- Intragenerational similarities
- Pairwise comparisons of actor (or partner) effects between two roles

```
fSRM.extra <- fSRM(neg1/neg2 ~ actor.id * partner.id |
    family.id, data = clinical,
    means = T,
    IGSIM=list(c("MO", "FA"), c("C1", "C2"))
    pairwise = TRUE)</pre>
```

(日) (圖) (E) (E) (E)

The Social Relations Model Description dataset tSRM: A user-friendly R-package	The pop-up window Single group analyses: clinical group Group comparison
108 p.FA — P.MO 0.056 0.028 1.994 0.046 0.001 0 109 A.C1 — A.C2 0.008 0.030 0.272 0.786 -0.061 0 110 P.C1 — P.C2 -0.013 0.025 -0.512 0.609 -0.061 0 Mean structure: Indices starting with 'C.' are pairwise comp factor estimate se z p.value cf.lower cf. 1.801 2 A.C1 0.383 0.038 10.076 0.000 1.801 2 A.C1 0.383 0.031 5.771 0.000 0.037 3 A.C2 0.134 0.033 5.771 0.000 0.070 4 A.FA -0.239 0.033 5.771 0.000 0.027 7 P.C2 0.151 0.037 4.042 0.000 0.0287 9 P.MM -0.239 0.035 6.527 0.000 0.237 11 </th <th>1035 NA Intragenerational similarities 1035 -0.088 Intragenerational similarities arisons between roles Indiana Second Child - bad child? (not significant) 0.229 One of the significant) 0.224 Mean SRM components 0.036 One of the significant) 0.224 Intragenerational significant) 0.224 Intragenerational components 0.0246 Intragenerational components 0.036 <</th>	1035 NA Intragenerational similarities 1035 -0.088 Intragenerational similarities arisons between roles Indiana Second Child - bad child? (not significant) 0.229 One of the significant) 0.224 Mean SRM components 0.036 One of the significant) 0.224 Intragenerational significant) 0.224 Intragenerational components 0.0246 Intragenerational components 0.036 <
	きょう 御 (前) (日) (日)

The Social Relations Model Description dataset tSRM: A user-friendly R-package	The pop-up window Single group analyses: clinical group Group comparison			
108 P.FA P.MO 0.056 0.028 1.994 0.046 0.001 0 109 A.C1 A.C2 0.008 0.030 0.272 0.786 -0.050 0	2.035 NA 0.067 O.088 G Intragenerational 0.035 -0.183 similarities arisons between roles			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.437 0.229 0.137 0.387 0.387 0.246 0.055 0.306 0.305 0.306 0.306 0.303 0.306 0.303 0.306 0.336 0.336 0.336 0.336 0.336 0.331 0.			
	< 日 > < 国 > < I = < I = < I = 			

	The Social Rela Descrip fSRM: A user-friend	otion dataset	The pop-up Single grou Group com	up analyses: clinical group
	estimate se z p. -0.008 0.022 -0.364 0.056 0.028 1.994 0.008 0.030 0.272 -0.013 0.025 -0.512 dices starting with 'C.		0.035 NA 0.111 NA 0.067 0.088 0.035 -0.183 mparisons between	Intragenerational similarities
1 Fit 2 A, CI 3 A, FZ 4 A, CI 5 A, MG 6 P, CI 7 P, CI 8 P, FA 9 P, MG 10 R, CL, CI 11 R, CL, MG 13 R, CL, MG 14 R, CL, FJ 15 R, CL, MG 16 R, FA, MG 19 R, MO, CI 20 R, R, MO, CI 21 C, meantr, A, CL, CI 22 C, meantr, A, CL, CI 23 C, meantr, A, CL, CI 24 C, meantr, A, CL, CI 25 C, meantr, A, CL, CI 26 C, meantr, A, CL, CI 27 C, meantr, A, CL, CI 28 C, meantr, A, CL, MG 29 C, meantr, A, CL, MG 20 C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{p.value } [\cdot]. \mbox{ over } [\cdot]. o$	1.908 0.457 0.229 -0.724 -0.177 0.224 -0.156 0.246 -0.156 0.246 -0.025 0.009 0.348 -0.068 -0.068 -0.063 -0.053 -0.053	 Mean SRM components Pairwise comparisons between the actor (and partner) effects of two roles

・ロト・(型)・(目)・(目)・ 目・ のへの

Main research question:

Differences in negativity between problematic and nonproblematic families?

- SRM with two indicators
- Two groups
- Differences in variances and means?

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Main research question:

Differences in negativity between problematic and nonproblematic families?

- SRM with two indicators
- Two groups
- Differences in variances and means?

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Main research question:

Differences in negativity between problematic and nonproblematic families?

- SRM with two indicators
- Two groups
- Differences in variances and means?

・ロト ・四ト ・ヨト ・ヨト

3

Main research question:

Differences in negativity between problematic and nonproblematic families?

- SRM with two indicators
- Two groups
- Differences in variances and means?

(日) (圖) (E) (E) (E)

• •

Difference of means between groups (1-2)

	component	diff	se	z	p.value	ci.lower	ci.upper
1077	.meanDiff.FE	0.202	0.028	7.182	0.000	0.147	0.257
1078	.meanDiff.A.Cl	0.293	0.049	5.998	0.000	0.197	0.388
1079	.meanDiff.A.C2	-0.178	0.053	-3.374	0.001	-0.281	-0.074
1080	.meanDiff.A.FA	-0.148	0.043	-3.407	0.001	-0.233	-0.063
1081	.meanDiff.A.MO	0.033	0.043	0.759	0.448	-0.052	0.117
1082	.meanDiff.P.C1	0.284		6.263	0.000	0.195	0.373
1083	.meanDiff.P.C2				0.516	-0.121	0.061
1084	.meanDiff.P.FA				0.680	-0.112	0.073
1085	.meanDiff.P.MO				0.483	-0.123	0.058
1086	.meanDiff.R.C1.C2			-0.782	0.434	-0.129	0.056
1087	.meanDiff.R.C1.FA			1.030	0.303	-0.041	0.131
1088	.meanDiff.R.C1.MO			-0.176	0.860	-0.099	0.083
1089	.meanDiff.R.C2.C1			-0.341	0.733	-0.108	0.076
1090	.meanDiff.R.C2.FA	-0.011	0.044	-0.251	0.802	-0.096	0.075
1091	.meanDiff.R.C2.MO	0.027		0.571	0.568	-0.066	0.120
1092	.meanDiff.R.FA.C1	0.010	0.039	0.259	0.796	-0.067	0.087
1093	.meanDiff.R.FA.C2		0.042	0.206	0.837	-0.074	0.091
1094	.meanDiff.R.FA.MO	-0.019	0.046	-0.408	0.683	-0.109	0.072
1095	.meanDiff.R.MO.Cl	0.006	0.042	0.143	0.887	-0.076	0.087
1096	.meanDiff.R.MO.C2	0.028	0.044	0.647	0.518	-0.057	0.114
1097	.meanDiff.R.MO.FA	-0.034	0.045	-0.761	0.447	-0.122	0.054

Difference of variances between groups (1-2)

	component	diff	se	z	p.value	ci.lower	ci.upper
1098	.varDiff.FE	0.020	0.022	0.917	0.359	-0.023	0.063
1099	.varDiff.A.C1	0.026	0.045	0.567	0.570	-0.063	0.114
1100	.varDiff.A.C2	0.046	0.054	0.850	0.395	-0.060	0.153
1101	.varDiff.A.FA	-0.039	0.032	-1.196	0.232	-0.103	0.025
1102	.varDiff.A.MO	-0.031	0.034	-0.914	0.361	-0.096	0.035
1103	.varDiff.P.C1	0.057	0.038	1.513	0.130	-0.017	0.132
1104	.varDiff.P.C2	0.023	0.039	0.586	0.558	-0.053	0.099
1105	.varDiff.P.FA	0.014	0.040	0.355	0.722	-0.064	0.092
1106	.varDiff.P.MO	-0.056	0.040	-1.410	0.159	-0.133	0.022
1107	.varDiff.R.C1.C2	0.254	0.125	2.028	0.043	0.008	0.500

• •

Output for each group

Difference between groups

<ロト <回 > < 回 > < 回 > .

• •

Difference of means between groups (1-2)

	component	diff	se	z	p.value	ci.lower	ci.upper
1077	.meanDiff.FE	0.202	0.028	7.182	0.000	0.147	0.257
1078	.meanDiff.A.Cl	0.293	0.049	5.998	0.000	0.197	0.388
1079	.meanDiff.A.C2	-0.178	0.053	-3.374	0.001	-0.281	-0.074
1080	.meanDiff.A.FA	-0.148	0.043	-3.407	0.001	-0.233	-0.063
1081	.meanDiff.A.MO	0.033	0.043	0.759	0.448	-0.052	0.117
1082	.meanDiff.P.C1	0.284		6.263	0.000	0.195	0.373
1083	.meanDiff.P.C2				0.516	-0.121	0.061
1084	.meanDiff.P.FA				0.680	-0.112	0.073
1085	.meanDiff.P.MO				0.483	-0.123	0.058
1086	.meanDiff.R.C1.C2			-0.782	0.434	-0.129	0.056
1087	.meanDiff.R.C1.FA			1.030	0.303	-0.041	0.131
1088	.meanDiff.R.C1.MO			-0.176	0.860	-0.099	0.083
1089	.meanDiff.R.C2.C1			-0.341	0.733	-0.108	0.076
1090	.meanDiff.R.C2.FA	-0.011	0.044	-0.251	0.802	-0.096	0.075
1091	.meanDiff.R.C2.MO	0.027		0.571	0.568	-0.066	0.120
1092	.meanDiff.R.FA.C1	0.010	0.039	0.259	0.796	-0.067	0.087
1093	.meanDiff.R.FA.C2		0.042	0.206	0.837	-0.074	0.091
1094	.meanDiff.R.FA.MO	-0.019	0.046	-0.408	0.683	-0.109	0.072
1095	.meanDiff.R.MO.Cl	0.006	0.042	0.143	0.887	-0.076	0.087
1096	.meanDiff.R.MO.C2	0.028	0.044	0.647	0.518	-0.057	0.114
1097	.meanDiff.R.MO.FA	-0.034	0.045	-0.761	0.447	-0.122	0.054

Difference of variances between groups (1-2)

	component	diff	se	z	p.value	ci.lower	ci.upper
1098	.varDiff.FE	0.020	0.022	0.917	0.359	-0.023	0.063
1099	.varDiff.A.C1	0.026	0.045	0.567	0.570	-0.063	0.114
1100	.varDiff.A.C2	0.046	0.054	0.850	0.395	-0.060	0.153
1101	.varDiff.A.FA	-0.039	0.032	-1.196	0.232	-0.103	0.025
1102	.varDiff.A.MO	-0.031	0.034	-0.914	0.361	-0.096	0.035
1103	.varDiff.P.C1	0.057	0.038	1.513	0.130	-0.017	0.132
1104	.varDiff.P.C2	0.023	0.039	0.586	0.558	-0.053	0.099
1105	.varDiff.P.FA	0.014	0.040	0.355	0.722	-0.064	0.092
1106	.varDiff.P.MO	-0.056	0.040	-1.410	0.159	-0.133	0.022
1107	.varDiff.R.C1.C2	0.254	0.125	2.028	0.043	0.008	0.500

• •

Output for each group

 Difference between groups

- More family negativity in problematic families
- Target adolescent reports more negativity

< ロ > < 圖 > < 圖 > < 필 > .

Some other features of the package:

- SRM in three person family
 - Specify which component to drop (default: family factor)
- Improve model fit
 - Modification indices
 - Fix negative or nonsignificant effects to zero
- Investigate difference over roles same component
- Handle missing data

・ 戸 ト ・ ヨ ト ・ ヨ ト

References

Eichelsheim, V. I., Buist, K. L., Dekovic, M., Cook, W. L., Manders, W., Branje, S. J. T. (2011). Negativity in problematic and nonproblematic families: A multigroup social relations analysis with structured means. *Journal of family psychology, 25*(1), 152-156.

Furman,W., & Buhrmester, D. (1985). Children's perceptions of the personal relationships in their social networks. *Developmental Psychology, 21*, 1016-1024.

Rosseel, Y. (2012). Lavaan: an R package for structural equation modeling. *Journal of Statistical Software, 48*(2), 1-36.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・