
Dynamic Resource Management in SDN-based
Virtualized Networks

Rashid Mijumbi∗, Joan Serrat∗, Javier Rubio-Loyola†, Niels Bouten‡, Filip De Turck‡ and Steven Latré§
∗Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
†CINVESTAV, 87130 Ciudad Victoria, Tamaulipas, Mexico
‡Ghent University − iMinds, B-9050 Gent, Belgium

§University of Antwerp − iMinds, B-2020 Antwerp, Belgium

Abstract—Network virtualization allows for an abstraction
between user and physical resources by letting a given physical in-
frastructure to be shared by multiple service providers. However,
network virtualization presents some challenges, such as, efficient
resource management, fast provisioning and scalability. By sep-
arating a network’s control logic from the underlying routers
and switches, software defined networking (SDN) promises an
unprecedented simplification in network programmability, man-
agement and innovation by service providers, and hence, its
control model presents itself as a candidate solution to the
challenges in network virtualization. In this paper, we use the
SDN control plane to efficiently manage resources in virtualized
networks by dynamically adjusting the virtual network (VN) to
substrate network (SN) mappings based on network status. We
extend an SDN controller to monitor the resource utilisation of
VNs, as well as the average loading of SN links and switches,
and use this information to proactively add or remove flow rules
from the switches. Simulations show that, compared with three
state-of-art approaches, our proposal improves the VN acceptance
ratio by about 40% and reduces VN resource costs by over 10%.

Keywords—Future Internet, network virtualization, software
defined networking, VN mapping, dynamic resource management.

I. INTRODUCTION

Network virtualization has emerged as a promising tech-
nology for the future Internet in which network deployment
and management are separated from service provision [1].
Specifically, an infrastructure provider (InP) owns, controls
and manages physical resources in form of substrate networks
(SNs), which may be used by one or more service providers
(SPs) to create virtual networks (VNs) to provide services
to end-users. However, hosting multiple VNs and supporting
their complete isolation raises resource management (RM)
challenges for the InP, e.g. the need to efficiently alocate SN
resources to multiple VNs.

Software Defined Networking (SDN) [2] is an appealing
platform for network virtualization environments (NVE), since
each VN’s control logic can run on a controller rather than the
physical switches [3]. SDN allows for a flexible and easier
way of defining VNs, say, by representing each virtual link
as a flow and hence defining a VN as a set of flow rules
in different switches. This way, SDN’s control plane can be
used to achieve important resource allocation policies such
as SN load balancing, VN resource cost minimization, e.t.c.
For instance, Flowvisor [4] and XNetMon [5] allow multiple
tenants to share an SDN substrate through virtualization by
allowing for isolation and sharing of network slices.

However, current proposals for virtualized SDNs are silent
about the RM requirements that result in such an environment.
For example, an important step in initializing VNs is the
mapping of virtual nodes1 and links to substrate nodes and
links. While this mapping is a well studied problem [6], as we
show in this paper, some of the resource mapping approaches
such as path splitting [7] that have been shown to lead to
better resource utilisation in VNs create another problem in an
SDN environment. When a virtual flow is split into multiple
sub-flows, each sub-flow would need flow rules in each of
the switches along the substrate path that supports it, hence
requiring more ternary content-addressable memory (TCAM),
which is expensive to build, consumes a lot of power and
dissipates a high level of heat [8]. In addition, if performed in a
static way, virtual to substrate resource mapping leads to high
resource fragmentation at the SN layer [9]. Therefore, since
VN requests arrive and depart in a dynamic manner, dynamic
RM leads to better resource utilisation efficiency [10]. Current
approaches to dynamic RM in virtualized networks are mainly
based on link migration [6], which is aimed at balancing the
load on substrate links without considering the effect on the
substrate node resources. As already mentioned, given the cost
and power dissipation [11], [12] of node resources in SDN
environments, it is necessary for a RM approach to also be
node resource aware and manage them.

In this paper, we propose a flow migration approach to
dynamically manage link and switch resources in an SDN-
based virtualized environment which does not only consider
link resources, but also node resources and VN resource costs.
To this end, we extend a floodlight controller [13] by adding
an application module which monitors the resource costs of
mapped virtual links, as well as average load of the substrate
links and switches. This information, coupled with that about
arrivals and departures of VN requests is used to determine
which virtual links can profitably be migrated. The module
then proactively modifies (adds and/or deletes) flow rules
(which represent virtual links) from the affected switches. The
idea of our proposal is that due to the dynamic arrival of VN
requests, some virtual flows may utilise more resources at the
time of mapping, but when some VNs leave, more efficient
flows can be established.

The rest of the paper is organised as follows: We present
related work in Section II. Section III describes the problem
for which we make a proposal in Section IV. Our proposal is
evaluated and discussed in Section V, and the paper concluded
in Section VI.

1In this paper, the terms node and switch are used synonymously.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. RELATED WORK

While SDN itself does not directly virtualize a network,
it has already received attention with regard to virtualization,
with [3], [4], all proposing closely related abstraction layer
approaches based on OpenFlow to enable the sharing of the
same hardware data plane among multiple logical networks.
These proposals do not consider the management of link and
switch resources. [14] presents an offline and static mixed in-
teger linear programming (MILP) formulation for a centralised
controller to calculate optimal end-to-end virtual paths over the
underlying InP, considering multiple requests simultaneously.
The authors in [15] propose a VN mapping approach in SDN
that aims at balancing the load on the SN and minimizing
controller-to-switch delays. They perform VN mappings in
an offline manner, assuming all VN requests are known in
advance. [12] proposes integrated allocation of link bandwidth
and flow table for multiple control applications in SDN using
a price-based joint allocation model of network resource in
order to achieve the minimum global delay.

With regard to dynamic RM in virtualized networks, Re-
active VN resource management approaches are given in [16]
in which a VN reconfiguration scheme migrates a single node
(and its associated VN links) in order to control migration
costs, and in [9] where a VN reconfiguration solution for
optical networks performs multiple (batch) reconfigurations.
Both these approaches are reactive in a way that migrations
are only performed after, say, a failed mapping. They also
do not consider switch loading. The proposal in [7] performs
a selective VN reconfiguration scheme that prioritizes the
reconfiguration for overloaded VNs and migrates them, while
[17] employs path migration to periodically re-optimize the
utilization of the SN by recomputing VN links for active VN
requests with longer residual lifetimes. Both approaches do
migrate the whole VN at once, employ path splitting (which
leads to more switch resource utilization), and the migrations
do not take switch loading into consideration. Finally, [10]
proposes an approach for dynamically managing VN resources,
but it does not not involve virtual link migrations.

In summary, current proposals for a SDN-based VNs
are silent about the RM requirements of NVEs, while the
approaches that are not geared towards SDN may become
inefficient in such environments, especially because they do
not take into consideration the need to also manage switch
resources. Our approach considers not only substrate link
loading, but also switch loading and the cost of mapping
VNs. Giving consideration to switch resources is necessary
in an SDN environment given that switch memory is more
expensive. To the best of our knowledge, this is the first attempt
to dynamically manage resources in SDN based NVEs.

III. PROBLEM DESCRIPTION

The RM problem considered in this paper is shown by
Fig. 1. VN requests arrive one at a time to the SN and
a mapping is performed. If the mapping is successful, the
dynamic RM module is triggered, otherwise, other VN requests
are considered. The focus of this paper is on the dynamic RM
block which ensures that even after a given VN is mapped
(during VN service period), link remappings/migrations can
be done to ensure efficient resource utilisation. It also ensures
that after the VN departs, the remaining VNs can be migrated
to optimise resource usage.

Start

Stop
More VN 

Requests ?

Yes

Dynamic Resource Management

No

VN Requests

Yes

No Successful 

Mapping ?

Mapping

VN SN

VN ServiceVN Departure

Fig. 1. Resource Management Algorithm

A. Network Representation

We model substrate SDN as a weighted undirected graph,
G(S,L), where S and L represent the sets of substrate
switches and links, respectively. Each substrate link luv ∈ L
connecting the substrate switches u and v has a bandwidth
Buv , while each substrate switch u ∈ S has a memory Mu.
The memory is the switch’s TCAM [18], and is therefore
a measure of the number of flow entries that the switch
can contain. In the same way, we represent a VN slice as
a weighted undirected graph denoted by G′(S′, L′), where
S′ and L′ represent the sets of virtual switches and links
respectively. Each virtual switch u′ ∈ S′ has a memory M ′u′ ,
while each virtual link lu′v′ ∈ L′ connecting the virtual
switches u′ and v′ has bandwidth B′u′v′

B. Virtual to Substrate Network Mapping

An example of a mapping problem is shown in the lower
part of Fig. 2 where the virtual network ABC is being mapped
onto the substrate network PQRSTU. To map the VN onto the
SN, each virtual switch i ∈ (A,B,C) should be mapped onto a
unique substrate switch u ∈ (P,Q,R, S, T, U) that has enough
memory to support it. In addition, all the virtual links have
to be mapped to one or more substrate links connecting the
switches to which the virtual switches at its ends have been
mapped. Each of the substrate links must have a sufficient
bandwidth to support the virtual link. This mapping step can
be achieved by use of most state-of-the-art mapping algorithms
[6], and is therefore out of the scope of this paper.

However, the resulting mapping in Fig. 2 exposes a prob-
lem that is unique to an SDN network. Consider the virtual
links AB and AC, which are mapped onto substrate paths
PTQ and PTU respectively, and hence, both go through the
substrate switch T. At the VN layer, flow rules would only
be required in virtual switch A to direct traffic to switches
B and C respectively, yet at the physical network layer, we
would need extra rules for each of the flows in switch T to
ensure that the two flows end up in the intended switches.
In fact, the number of rules would even increase further in
case of path splitting. For example, if the flow AC splits at
T to take the paths TSU and TU, then another rule would
be needed in switch S. Having a high number of rules in
the network for a single flow does not only mean that VN
owners have to pay more for their network slices (increased
costs), but also ensures that SN switch resources (memory) are
easily depleted, which causes subsequent VN requests to be
rejected. This negatively affects the VN acceptance ratio and



A

B

C
P

Q
R

S

T

U

Floodlight

OpenFlow

Host 1
Host 2

Database

Monitoring

STATE ACTIONS

Resource Manager

SDN Controller

Fig. 2. Proposed Dynamic Resource Management System

hence profitability of InPs. Therefore, there is a need for an
efficient management of resources (especially the memory of
the switches along the substrate path) to ensure that in addition
to link bandwidth which has been the focus of current path
migration approaches, switch memory is also considered.

C. Dynamic Resource Management

The dynamic RM proposed in this paper takes effect after
a successful mapping. It involves monitoring the resource
utilisation (both link and switch) of mapped virtual links, as
well as average loading of the substrate links and switches.
Every time substrate resources are freed (because of departures
of VNs), remapping attempts are made for those virtual links
that are deemed to be more deserving of a remapping. The
objectives of the remappings are: balance SN loading and
minimize the total resources used by the VN. Our proposal
is detailed in the next Section.

IV. PROPOSED RESOURCE MANAGEMENT SYSTEM

The proposed RM approach is shown in Fig. 2. Compared
to the general SDN network, our system includes a resource
manager and a database, which are extensions to an
existing SDN controller, floodlight. The forwarding module
in floodlight (which is responsible for automatically and
reactively managing flow rules) is disabled such that all flow
rules in the switches are added proactively by the resource
manager, which allows better manageability.

Database

The database is used to store all flow rules that are
currently active in the SN. The idea is that instead of
continuously polling the switches to establish their tables over
the southbound, the controller maintains an entry of all the
active rules. Every time a VN mapping is successful2, all the
flow rules that represent the mapped virtual links are added
to the database, and at the same time they are pushed to the
affected switches using OpenFlow. The rules are added with

2A VN to SN mapping algorithm is implemented as part of the resource
manager

practically no time out to ensure that they are only removed
from the switches by the resource manager. In the same way,
when a rule is deleted from any of the switches, it is also
deleted from the database. The database also stores the virtual
to substrate link and switch mappings, as well as the resource
availability and usage statistics.

Resource Manager

The resource manager is state-action engine, that, based
on a specific state takes an action.

A. State

The states are determined from the dynamic nature of the
virtualization environment. The network state changes as new
VNs are embedded and as old ones leave. These changes affect
the loading of the SN as well as the resource utilisation of
the VNs. These parameters are defined for each virtual link,
and are aimed at determining a measure of the desirability of
migrating a given virtual link. The idea is to re-allocate those
virtual links that maximise the benefit, i.e reduce substrate
resource utilisation, while at the same time reducing the load
of the already loaded substrate links and switches.

1) Virtual Link Resource Utilisation: We define the re-
source utilisation Ru′v′ of a virtual link lu′v′ as the total
resources used by the virtual link. It takes into consideration
both the bandwidth Bu′v′ used by the virtual flows of the
virtual link on each substrate link onto which it is mapped,
as well as the switch memory Mu′ used by the flow rules
associated with it, both at the end switches u′ and v′ as well
as intermediate ones. Whenever any VN is mapped onto the
SN, each of its virtual links is evaluated to determine Ru′v′

using the expression in (1).

Ru′v′ = α
∑

luv∈Pl
u′v′

(
Bu′v′

)
+ β

∑
u∈Pl

u′v′

(
Mu′

)
(1)

where Plu′v′ is the substrate path onto which the virtual link
lu′v′ has been mapped. As an example, using the networks in
Fig. 2, the substrate path PAB for virtual link AB is PTQ.
Therefore, the set luv ∈ Plu′v′ includes both PT and TQ,
while u ∈ Plu′v′ includes the switches P, T, and Q. α and
β are constants aimed at scaling the two terms to comparable
magnitudes, or for giving one resource type more importance
than the other.

2) Available Substrate Resources: The available substrate
resources Au′v′ is also defined for each virtual link lu′v′ . It is
defined as a sum over all links and switches on the substrate
path Plu′v′ . It is the total amount of both substrate link
and switch resources that have not been allocated (available),
i.e. total capacity minus resources allocated to mapped VNs.
The objective of using available resources is to ensure that
substrate links or switches with less available resources are
given priority when decisions about which virtual links to
migrate are made. Au′v′ is defined in (2) below.

Au′v′ = α
∑

luv∈Pl
u′v′

(
Buv −B′uv

)
+ β

∑
u∈Pl

u′v′

(
Mu −M ′u

)
(2)



where B′uv is the total bandwidth of substrate link luv that
is currently allocated to virtual links, while M ′u is the total
memory of substrate switch u that is currently allocated to the
virtual switches mapped onto it.

3) Virtual Link Weights: Finally, with the two variables
defined in sub sections IV-A1 and IV-A2, we determine a
weight Wu′v′ which is attached to each virtual link. This
weight is a linear combination of equations (1) and (2), and is
given in (3).

Wu′v′ = λRu′v′ − µAu′v′ (3)

where λ and µ are constants aimed at biasing the weight of
a given virtual link to either its resource utilisation or the
availability of resources on the substrate links onto which it
is mapped. A high value of Wu′v′ means that the virtual link
lu′v′ utilizes a lot of SN resources (i.e. lu′v′ is not efficiently
mapped) and that the SN is highly loaded along the path
mapping lu′v′ . This in turn represents a virtual link which
should be urgently considered for a remapping. A similar
(opposite) argument holds for low values of Wu′v′ . For a given
virtual link, the values of Ru′v′ and Au′v′ are uncorrelated, and
may be conflicting in some cases since the substrate path which
results into lower resource utilisation may have less available
resources. The values of λ and µ may also be used to scale
the values of Ru′v′ and Au′v′ to comparable magnitudes3. The
reason for the negative sign on the term Au′v′ is that, as earlier
stated, we are interested in favouring those substrate links or
switches which have the least available resources.

4) Flow Migration: Every time the status of the SN
changes (i.e a new VN request is accepted or a previously
accepted request departs), the resource manager re-computes
the weight Wu′v′ for each virtual link lu′v′ . The database
includes a map Vw(lu′v′ ,Wu′v′) of these weights, which is
sorted in descending weight every time it is changed. If the
status change was due to a departing VN, a number n of
virtual links is selected from the top of Vw, and for all of them,
starting with the top most one a re-mapping is attempted. In
this paper, n is chosen to be equal to the number of links in
the departing VN. This choice of n is reasonable because since
resources from n substrate paths are freed by the departing VN,
which also avoids the computation costs that would result from
frequently attempting to remap all the virtual links.

If the re-mapping attempt is successful, a new weight
Wnew

u′v′ is calculated for the link, and compared with the old
one. A given virtual link is only actually migrated if its new
weight is less than the previous one. This avoids migrating a
virtual link into a worse mapping, since it is possible that the
resources freed by the departing VN do not result into a better
substrate path of the virtual link under consideration.

B. Actions

The actions are with respect to modification of rules in the
switches. Therefore, there are three possible actions: addition,
modification and deletion of flow rules from the switches. All
these actions are supported by Openflow.

1) Flow Rule Addition: Whenever a new VN is success-
fully mapped, the resource manager, through floodlight, adds
flow rules to the switches concerned, for all the virtual links.

3In this paper, we use them for this latter purpose

For example, after the mapping of the virtual network ABC in
Fig. 2, for virtual link AB, the controller would add rules to
switches P, T and Q, to establish the substrate path PTQ. These
three rules are also added to the database, and the resource
availability and utilisation updated.

2) Flow Rule Modification: As VNs arrive and depart, the
SN becomes fragmented. It is possible that after sometime,
the flow rules for a virtual link should be modified. This is
triggered by a departure of a VN which avails some resources
in a better substrate path. For instance, if resources become
available on the substrate link PQ, it may be better to migrate
the virtual link AB from PTQ to PQ. In this case, the rule in
switch P should be modified to end up on Q instead of T.

3) Flow Rule Deletion: The resource manager can delete
a flow rule in two cases: (1) when a virtual link is migrated,
some rules become useless and should therefore be deleted.
As an example, in Fig. 2, if the virtual link AB is migrated
from substrate path PTQ to PQ, then the corresponding flow
rule in switch T becomes useless, and is therefore deleted, (2)
When a given virtual link departs, all its links are taken down,
and as such all its corresponding rules are deleted.

V. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate our proposal, we extended a floodlight con-
troller to include a module that performs the functions of our
proposal. The SN is created in Mininet [19]. Both Flood-
light and Mininet run on different Ubuntu virtual machines
each with 1.0GB RAM. The SN topology is based on the
GÉANT [20] network. GÉANT is composed of 23 routers
interconnected using 38 links. The VN topologies are created
using Brite [21] with a uniformly distributed number of nodes
between 3 and 10. The virtual to SN mapping is performed
by performing the node mapping using a greedy approach [7]
and link mapping using a multi-commodity flow (MCF) [22]
formulation (without path splitting), which is then solved using
CPLEX 12.6.0.0 [23]. The memory and bandwidth capacities
of substrate switches and links are uniformly distributed be-
tween 100 and 250 units respectively. The memory demand
for virtual network switches is uniformly distributed between
2 and 10 units, while the bandwidth demand of the links is
uniformly distributed between 25 and 50 units. We consider
that each flow rule requires 1 unit of switch memory. We
assume Poisson arrivals at an average rate of 1 per 5 time
units. The average service time of the requests is 120 time units
and assumed to follow a negative exponential distribution. The
simulation is performed for 1500 VN arrivals.

B. Evaluation Parameters

1) Acceptance Ratio: The acceptance ratio is a measure
of the number of VN requests accepted compared to the total
requests. In the long run, the acceptance ratio translates into
profitability of infrastructure providers, since each accepted
VN request would result into revenue for the InP.

2) Average Link and Switch Resource Utilization: We de-
fine average link resource utilization as the average proportion
of the total substrate link bandwidth capacity that is under
use at any given time. In the same way, we define the



0

0.2

0.4

0.6

0.8

1

100 300 500 700 900 1100 1300 1500

Ac
ce

pt
an

ce
 R

at
io

Total Requests
GNMSP SPLIT SDN-VN CNMMCF

Fig. 3. Average Acceptance Ratio

0

0.2

0.4

0.6

0.8

1

100 300 500 700 900 1100 1300 1500

Av
er

ag
e S

wi
tc

h R
es

ou
rc

e U
til

isa
tio

n

Total Requests
GNMSP SPLIT SDN-VN CNMMCF

Fig. 4. Average Switch Resources Utilization

0

0.2

0.4

0.6

0.8

1

100 300 500 700 900 1100 1300 1500

Av
er

ag
e L

in
k R

es
ou

rc
e U

til
isa

tio
n

Total Requests
GNMSP SPLIT SDN-VN CNMMCF

Fig. 5. Average Link Resources Utilization

0

200

400

600

800

1000

1200

1400

1600

100 300 500 700 900 1100 1300 1500

Av
er

ag
e 

Co
st

 (U
ni

ts
)

Total Requests
GNMSP SPLIT SDN-VN CNMMCF

Fig. 6. Average VN Mapping Cost

TABLE I. COMPARED ALGORITHMS

Code Resource Mapping Method

GNMSP Greedy Node Mapping and k−Shortest Path for links [17]
CNMMCF Coordinated Node and MCF for Link Mapping [24]
SPLIT Greedy Node Mapping and path splitting for Link Mapping [7]
SDN-VN Our Proposal

average switch utilization as the average proportion of the total
substrate switch capacity that is under use at any given time.
These two parameters are a measure of how efficiently the
substrate resources are being utilised.

3) VN Mapping Cost: We define the average VN mapping
cost as the total amount of resources that are used by all VNs
mapped by a given SN divided by the number of mapped
VNs. The total amount of resources used by a VN is obtained
by determining and summing the resource utilisation for each
virtual link as defined in equation (1). It is a dynamic parameter
that takes into account the changes to the mapping cost of the
virtual links attached to the VN, and is a measure of how
effectively the flow migrations minimize the total resource
costs of a VNs.

C. Comparison with other approaches

To evaluate the performance of our proposal, we compare
it with three other approaches defined in Table I. Both GNMSP
and CNMMCF do not perform any path migrations after the
initial mapping, even though GNMSP maps links in one path
while CNMMCF allows for paths splitting. SPLIT performs
path migrations based only on the loading of links and allows
for splitting of paths.

D. Discussion of Results

From graph Fig. 3 it is evident that SDN-VN achieves
a significantly higher acceptance ratio than all the other ap-
proaches. With respect to the static approaches GNMSP and

CNMMCF, this can be attributed to advantages of carrying
out path migrations that do only optimize resource usage by
existing VNs, but also balances the loading of the SN, giving
it a higher chance to accept new requests. With regard to
SPLIT, the difference in performance is expected since the
path migrations in SPLIT do not consider both switch loadings
as well as VN mapping costs. In addition, path splitting uses
up more switch memory in SPLIT, which is likely to lead to
more failed mappings due to depleted switch resources. It is
also worth noting that CNMMCF achieves an almost similar
acceptance ratio compared to SPLIT. This is surprising since
CNMMCF is a static resource allocation approach. However,
it could be explained by the superior node mapping phase
(the coordinated node and link mapping) in CNMMCF, which
makes it use switch resources better than SPLIT.

In Figs. 4 and 5, we show the average utilisation of both
switch and link resources. Except for GNMSP which performs
relatively poorly, the other three approaches achieve a compa-
rable utilisation of network resources. The poor utilization of
GNMSP can be attributed to its static nature, coupled with the
fact that both its node and link mapping algorithms are inferior
compared to those of, say, CNMMCF. The fact that SDN-
VN and SPLIT have comparable resource utilization profiles
is expected since both of them carry out path migrations which
allow the substrate network ability to effectively utilize its
resources. Once more, while surprising, the fact that CN-
MMCF performs comparable to SPLIT and SDN-VN could
be explained by a superior initial node mapping algorithm. It
is however worth remarking that while these three approaches
utilise almost the same amount of substrate resources, SDN-
VN uses these resources to accept almost 35% more VN
requests than SPLIT and CNMMCF which further underlines
the effectiveness of our proposal. As part of future work,
we will investigate the actual cause of the performance of
CNMMCF, say, by utilizing the same node mapping algorithm
for all four approaches.

Finally, Fig. 6 shows the average amount of substrate



resources used to map each VN. The fact that CNMMCF has
the worst cost is not surprising since it is static, not taking
advantage of VN departures to reduce link and switch mapping
costs. On the other hand, the best mapping costs for GNMSP
are a direct result of the fact that most VN requests are not
accepted, resulting from the link mapping algorithm. We also
observe that SDN-VN performs slightly better than SPLIT.
This is due to the fact that the link migrations in SDN-VN are
mindful of the switch resources, in addition to the fact that
SDN-VN saves some switch resources since all virtual links
are represented by a single flow.

VI. CONCLUSION

This paper has proposed a dynamic resource management
approach which is aware of the both link and switch resources
in an SDN based virtualized network environment. We ex-
tended a floodlight controller to add a module that, based on a
particular situation of the networks, performs path migrations
by adding, modifying or deleting flow rules. We have shown
through simulations that our proposal performs better than a
static approach as well as a dynamic approach which only
considers link resources, by accepting 40% more VN requests,
and achieving a 10% lower resource cost to the VNs.

However, the results presented is this paper are only an
initial step towards an efficient dynamic RM solution in SDN-
based virtualized networks. In particular, since mapping of
VNs onto a SN is computationally intractable (even when
the switches have already been mapped), frequently perform-
ing link migrations significantly loads the controller. Our
next steps will include evaluating the actual extra loading to
the controller, the effect of having multiple controllers, and
proposing an initial mapping algorithm that takes into account
the memory capacities of all switches along a substrate path,
so that remappings are minimized. We also intend to subject
the VNs to real traffic using iperf [25] and traffic matrices from
geant [20] so as to evaluate throughput, and latency. Finally,
it will be interesting to make a real implementation, say based
on Flowvisor [4], to evaluate more realistic scenarios.

ACKNOWLEDGMENT

This work is partly funded by FLAMINGO, a Net-
work of Excellence project (318488) supported by the Euro-
pean Commission under its Seventh Framework Programme,
project TEC2012-38574-C02-02 from Ministerio de Economia
y Competitividad, the CONACYT FOMIX project TAMPS-
2012-C35-185768 and CONACYT-CDTI Project 189413.

REFERENCES

[1] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of
network virtualization. Computer Networks, 54(5):862 – 876, 2010.

[2] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti.
A survey of software-defined networking: Past, present, and future of
programmable networks, 2014.

[3] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization
in software-defined networks. Internet Computing, IEEE, 17(2):20–27,
March 2013.

[4] R. Sherwood et. al. Carving research slices out of your production net-
works with openflow. SIGCOMM Comput. Commun. Rev., 40(1):129–
130, January 2010.

[5] N.C. Fernandes and O.C.M.B. Duarte. Xnetmon: A network monitor
for securing virtual networks. In Communications (ICC), 2011 IEEE
International Conference on, pages 1–5, June 2011.

[6] A. Fischer, J.F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach.
Virtual network embedding: A survey. Communications Surveys Tuto-
rials, IEEE, 15(4):1888–1906, Fourth 2013.

[7] Y. Zhu and M. Ammar. Algorithms for assigning substrate network
resources to virtual network components. In INFOCOM. 25th IEEE
International Conference on Computer Communications., pages 1–12,
2006.

[8] F. Zane, G. Narlikar, and A Basu. Coolcams: power-efficient tcams
for forwarding engines. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications. IEEE
Societies, volume 1, pages 42–52 vol.1, March 2003.

[9] F. Gu, M. Peng, S. Khan, A Rayes, and N. Ghani. Virtual network
reconfiguration in optical substrate networks. In Optical Fiber Com-
munication Conference and Exposition and the National Fiber Optic
Engineers Conference (OFC/NFOEC), 2013, pages 1–3, March 2013.

[10] R. Mijumbi, J.L. Gorricho, J. Serrat, M. Claeys, F. De Turck, and
S. Latre. Design and evaluation of learning algorithms for dynamic
resource management in virtual networks. In Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS),
NOMS2014, 2014.

[11] K. Kannan and S. Banerjee. Compact TCAM: Flow Entry Compaction
in TCAM for Power Aware SDN. In D. Frey, M. Raynal, S. Sarkar,
R. K. Shyamasundar, and P. Sinha, editors, ICDCN, volume 7730 of
Lecture Notes in Computer Science, pages 439–444. Springer, 2013.

[12] T. Feng, J. Bi, and K. Wang. Joint allocation and scheduling of
network resource for multiple control applications in SDN. In Network
Operations and Management Symposium (NOMS), 2014 IEEE, pages
1–7, May 2014.

[13] S.A Shah, J. Faiz, M. Farooq, A Shafi, and S.A Mehdi. An architectural
evaluation of sdn controllers. In Communications (ICC), 2013 IEEE
International Conference on, pages 3504–3508, June 2013.

[14] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani. Virtual links mapping in future sdn-enabled
networks. In Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, pages 1–5, Nov 2013.

[15] D. Mehmet and A. Mostafa. Design and analysis of techniques
for mapping virtual networks to software-defined network substrates.
Computer Communications, 45(0):1 – 10, 2014.

[16] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. VNR Algo-
rithm: A Greedy Approach for Virtual Networks Reconfigurations. In
GLOBECOM, pages 1–6. IEEE, 2011.

[17] M. Yu, J. Yi, Y.and Rexford, and M. Chiang. Rethinking virtual
network embedding: Substrate support for path splitting and migration.
SIGCOMM Comput. Commun. Rev., 38(2):17–29, March 2008.

[18] K. Kannan and S. Banerjee. Compact TCAM: Flow Entry Compaction
in TCAM for Power Aware SDN. In D. Frey and M. Raynal, editors,
Distributed Computing and Networking, volume 7730 of Lecture Notes
in Computer Science, pages 439–444. 2013.

[19] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and R. P.
Ligia. Using mininet for emulation and prototyping software-defined
networks. In Communications and Computing (COLCOM), IEEE
Colombian Conference on, pages 1–6, June 2014.

[20] GéANT: the pan-European research and education network. http://www.
geant.net/Pages/default.aspx. Accessed: 2014-07-25.

[21] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Ap-
proach to Universal Topology Generation. In Proceedings of the
Ninth International Symposium in Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, MASCOTS ’01, pages
346–353, Washington, DC, USA, 2001. IEEE Computer Society.

[22] C. Barnhart, N. Krishnan, and P. Vance. Multicommodity Flow
Problems. In C. A. Floudas and P. M. Pardalos, editors, Encyclopedia
of Optimization, pages 2354–2362. Springer US, 2009.

[23] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/about/. Accessed: 2014-07-13.

[24] M. Chowdhury, M.R. Rahman, and R. Boutaba. Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping.
Networking, IEEE/ACM Transactions on, 20(1):206 –219, feb. 2012.

[25] H. Chung-hsing and K. Ulrich. IPERF: A Framework for Automatic
Construction of Performance Prediction Models. In In Workshop on
Profile and Feedback-directed Compilation (PFDC), 1998.


