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Abstract—This paper investigates the use of reservoir comput-
ing for active noise control (ANC). It is shown that the ANC
problem can be solved by a concatenation of physically present
subsystems. These subsystems can be modelled by reservoirs that
are trained, using one shot learning. This approach is compared
to genetic algorithms tuning a Volterra filter. Experimental
results show that our approach works well as system model,
meaning that a reservoir trained on white noise performs good
on other input signals as well. This is a major advantage over
genetic algorithms that generalize rather badly. Furthermore, our
approach needs less data and this data can be gathered in one
experiment only.

Index Terms—Active Noise Control (ANC), System Modeling,
Reservoir Computing

I. INTRODUCTION

Unwanted noise has since long annoyed human beings and
a lot has been done to reduce these disturbing signals. The
classical approach to do this, is by passive noise control such
as ear plugs and anti-noise screens along highways. The main
drawback of these techniques is that they have problems with
low-frequency noise, since the attenuation through blocking
material is inversely proportional to the wavelength.

Active noise cancellation (ANC) produces an anti-noise
signal with opposite phase as the incoming noise. Superpo-
sition of these waves leads to an attenuated leftover noise
[1], [2]. As the output signal should destructively interfere
in a larger space than only at the speaker, this method works
best when the dimensions of the noise source and speakers
are small with respect to the wavelength. Furthermore, if the
signal has to be processed digitally, the Shannon theorem
dictates a lower sampling frequency for lower frequencies,
while also a possible prediction task is easier and processing
time constraints are more relaxed. It is thus clear that ANC
is easiest with low frequencies, which makes it an excellent
addition to passive noise cancellation.

As early as 1936, Paul Lueg published a patent about ANC
with a microphone and a loudspeaker. The technology has
since then evolved with many systems and applications as a
result [3]. The filtered-x LMS (FXLMS) algorithm became a
popular choice for filtering recorded noise into a compensating
signal and many implemented or improved it [4], [5]. One
of these improvements was the Volterra FXLMS, which adds
non-linear terms to the Finite Input Response (FIR) filter
[6], [7]. This extension was created because some systems

appeared to show non-linear behaviour and the linear FXLMS
could not cope with this. These non-linearities can have many
causes: non-linear properties of air at high pressure, AD/DA
conversion, loudspeakers and amplifiers. Main disadvantages
of these methods are that they may converge to local minima
and that they need the identification of the secondary path,
being the path from the compensating speaker to the error
microphone.

An interesting alternative is using genetic algorithms. Russo
and Sicuranza [6], [8] and Chang and Chen [9] state that these
do not suffer the previously mentioned disadvantages, while
still providing good performance. They use a standard genetic
algorithm, where every entity in the population represents a
set of FIR or Volterra filter coefficients. A new generation is
then created by combining sets of two entities into children.
The parents are selected based on their fitness, which in our
case is based on the error signal (e.g. the mean square error).

Instead of performance-based learning, this paper focusses
on supervised learning via reservoir computing. This technique
starts with a recurrent neural network with randomly initialized
weights. This network is called a reservoir. Instead of training
the network itself, which is the usual approach for neural
networks, only the readout is trained [10]–[12]. For single-
input-single-output systems, this means that one inserts one
sample every time step, so all N nodes in the reservoir have
a value that is a (complicated) function of all past inputs.
This N -dimensional sequence of node values are then matched
to the one-dimensional output sequence via ridge regression,
which is linear regression with regularization.

It has been shown that reservoir computing works well
on digital signal processing tasks like speech recognition
[10], [13] and chaotic time series prediction [14]. This last
result is especially important for ANC because several noise
mechanisms have shown to exhibit chaotic behaviour [15],
[16].

The rest of this paper will be organised as follows. Sec-
tion II will discuss the considered setup. Section III briefly
explains the genetic algorithm implementation that is used as
reference. Section IV discusses the core of our approach. The
experimental setup is described in section V and results are
shown in section VI. A conclusion is drawn in section VII.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. ANC setup with two microphones. The controller is generally filtering
the input from the reference microphone and is adapted by the error signal.

Fig. 2. ANC setup with one microphone. The controller generates a
compensating signal from the error signal. The term “secondary path” is used
for consistency with the first setup.

II. ANC SETUP

In this paper, we consider two ANC setups: one using
two microphones and another using one microphone. The
first setup is the same as in [6], [8], [9] and is depicted in
Figure 1. Two paths are important here: the primary from the
reference point to the error microphone and the secondary
from the compensating speaker to the error microphone. The
usual approach is to use the reference signal as input for
generating a compensating signal, and to use the error signal
to adapt the filter. This is also the approach we will follow.

The second setup is a simplification of the first in terms of
hardware and acoustical separation. The first setup assumes
perfect isolation between the speaker and the reference micro-
phone. This is either not true or puts strict requirements on
the mechanical layout. This simplification comes at the cost
of less input signals.

III. ADAPTIVE GENETIC ALGORITHM

As reference, we implemented the adaptive genetic algo-
rithm of [8] and [9] by applying the same system (Figure 3)
with the same Volterra filter as controller block. We also used
the same population (600) and number of generations (500)
as in their work. As the reward function, the Mean Square
Error (MSE) was taken from [8] and 200 train samples were
considered. This means that the fitness function for all entities
was evaluated using the same 200 training samples. After
some optimization of the other parameters, the coefficients
evolved to an acceptable solution. As reference, we also tried

out Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [17], [18] on the same error function. CMA-ES is another
method to optimize coefficients based on a generic error
function.

Genetic algorithms perform well for this task, but the
adaptive nature of them can be questioned. The main problem
is that the number of experiments for an acceptable solution
is very large. Take 500 generations with a population of 600,
this requires 600 · 500 = 300.000 experiments. Even more
problematic is an expected performance drop when the applied
noise characteristics change during training. While comparing
genes of the same population, it will indeed lead to false
comparisons if the hardness of the task differs.

IV. SYSTEM MODELLING WITH RESERVOIR COMPUTING

We propose solving above issues by system modelling with
reservoir computing. To train the output layer of a reservoir, it
only takes one experiment of a couple of seconds. As soon as
the right models are made, the ideal compensating signal can
be calculated. This will further be explained in more detail.

For modelling a system, we used a leaky reservoir with
tanh as non-linear function followed by ridge regression. We
optimized the ridge parameter, leak rate, input scaling, spectral
radius and bias on a validation set. All reservoir models are
compared to regular ridge regression, using a window of 80
samples including quadratic terms:

y(n) =

79∑
i=0

h
(1)
i x(n− i) +

79∑
i=0

h
(2)
i x2(n− i) (1)

where x and y are input and output signals respectively of
an individual system and h(j)i are the weights that need to be
trained. We optimized the ridge parameter on a validation set.

A. Two-microphone system

Working on the block diagram of Figure 3, it can easily be
seen that the ideal controller is:

Controller = S−1 ◦ P (2)
= S−1 ◦M−1 ◦M ◦ P (3)
= (M ◦ S)−1 ◦ (M ◦ P ) (4)

where the ◦-operator means ’after’. Since the systems could
be non-linear, commutativity does not hold.

The problem is thus reduced to finding a model for M ◦ P
and (M ◦ S)−1. Therefore, we need to capture meaningful
signals at the input and output of the systems. For M ◦P , one
sets c(n) to zero and records the noise signal x(n) and the
error signal e(n). Assuming an ideal reference microphone
(M ′(x(n)) = x(n)), this effectively captures M ◦ P . For
(M ◦S)−1, the noise source x(n) is silenced and a signal c(n)
is applied to the speaker. Since the nature of the compensating
signal is not known beforehand, we chose white noise as
c(n). By recording the error signal, M ◦ S is captured and
by swapping input and output, (M ◦S)−1 is also captured. As
soon as enough input-output pairs are found, a reservoir output
layer can be trained to mimic the behaviour of the (M ◦S)−1.



Fig. 3. Block diagram of the two-microphone system studied in this paper. P , S and M(′) symbolize the systems governing the primary path, secondary
path and microphone systems respectively. In general, these are non-linear systems.

Fig. 4. Block diagram of the one-microphone system studied in this paper.
S and M symbolize the secondary path and microphone system respectively.
g(n) is sensor noise and equal to zero if unspecified.

If S introduces a larger delay than P , modelling S−1 ◦ P
equals predicting the future. This is impossible for some
signals and feasible for others. We do not consider this
problem as it is the subject of numerous other works [19]–
[22].

B. One-microphone system

Figure 4 shows the block diagram of the one-microphone
system. We introduced an additional Estimator block because
the error microphone receives y(n), g(n) and C(n), but
Controller should compensate y(n) only. Consequently, we
try to estimate y(n) from e(n) and c(n).

If we assume that M is a linear system, we can reorganize
this diagram to get Figure 5. It is clear that, in order to get
e′(n) ≡ 0, Estimator should model M ◦S and that Controller
should model (M ◦ S)−1. The acquisition of train data for
these is even easier because it requires only one experiment.
Note that the controller will always need a prediction module.

V. EXPERIMENTAL SETUP

All simulations were performed with a frequency of 8 kHz.

Fig. 5. Reorganized block diagram of Figure 4 with the assumption that M
is linear.

A. Simulation

We simulated our approach with the same (non-linear) path
definitions as in [8] and [9]. These definitions are

P : x→ y (5)

with{
s(n) = x(n− 5)− 0.3x(n− 6) + 0.2x(n− 7)
y(n) = s(n− 2) + 0.08s2(n− 2)− 0.04s3(n− 1)

(6)

for the primary path, and

S : c→ C (7)

with {
r(n) = 0.66 tanh(1.5c(n))
C(n) = r(n− 2) + 1.5r(n− 3)− r(n− 4)

(8)

for the secondary path. As test signal, we use the logistic noise
of [8] generated by the equation x(n+ 1) = λx(n)[1− x(n)]
with λ = 4 and x(0) = 0.9. Additionally, we also used a white
noise signal and a 200 Hz sine wave with some added white



Fig. 6. Real speaker and microphone setup.

noise. The added white noise had a standard deviation of 0.1
times the sine amplitude

B. Real speaker and microphone

We tested our approach in a practical setup consisting of
a Shure SM58 microphone and a Harman/Kardon HK206
speaker as can be seen in Figure 6. The applied signal was a
white noise signal. While a complete system has not yet been
implemented, the necessary experiments were done to evaluate
the system without predictor.

VI. EXPERIMENTAL RESULTS

All results are summarized in Table I and the optimal
parameter values and intermediate results are stated in Table
II. If we look at the genetic algorithms to which we compare,
we see poor performance when applied to white noise. This
suggests that the technique relies on the signal to be easily
predictable meaning that the output signal is memorized rather
than the system.

Our system suffers much less from this problem. A reservoir
trained on white noise is able to to generalize quite well. For
example, the (M◦S)−1 system, trained on white noise gave an
MSE/Et of −10.39 dB for white noise and −12.65 dB for
logistic noise. This means that the reservoir actually performs
better on an unknown (easier) signal than on the training
signal. To show that this is not trivial, the ridge regression
performs worse on the logistic data, as can be seen in Table
II.

In simulation, the reservoir + ridge regression approach
always outperformed ridge regression, what means that the
non-linear nature of the filters plays a significant role and that
a system with linear and second order terms cannot model
this. This ability to model non-linearities is the strength of the
reservoir approach.

The one-microphone setup in simulation has a similar per-
formance as the two-microphone setup. This is partly because
noise prediction is ignored (noise prediction on white noise is
of course impossible). On the other hand, good performance
is obtained because the M ◦ S-model performs a lot better
than the (M ◦ S)−1-model (Table II). Just like in all other
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Fig. 7. Power spectral density of the speaker-to-microphone system with a
470 Hz sine wave as input. The output signal was normalized so both signals
have equal energy.
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Fig. 8. Power spectral density of the speaker-to-microphone system with
white noise as input. The output signal was normalized so both signals have
equal energy.

simulations setups, the performance thus mainly depends on
the (M ◦ S)−1-model.

For the practical system, results are quite different. Here,
ridge regression performs better than the reservoir. Further-
more, omitting the second order terms of the ridge regression
does not significantly influence performance. The model for
this real-world system is thus a linear one. This linear hypoth-
esis is supported by Figure 7 which suggests that the system
is a linear filter plus noise. Assuming a linear filter and white
added noise, the filter would look like the output signal of
Figure 8.



Reduction (dB)
Signal Sine Logistic White noise

#Microphones 2 2 2 1

Simulation Genetic 17.14 17.06 6.70
CMA-ES 17.67 17.20 1.80
Ridge regression 10.21 8.38 6.31 5.44
Reservoir 17.42 16.17 13.64 12.62

Practical Ridge regression 11.73
Reservoir 10.60

TABLE I
EXPERIMENTAL RESULTS.

MSE/Et (dB) Optimized reservoir parameters
System Signal Reservoir Ridge # Nodes Leak Input Bias Spectral

regr. rate scaling radius

Simulation M ◦ P Sine -66.39 -40.23 100 1 0.1 0.4 0.5
M ◦ P Logistic -75.69 -36.99 100 0.8 0.1 0.4 0.5
M ◦ P White noise -41.79 -19.21 100 0.8 0.1 0.4 0.5
M ◦ S White noise -17.87 -9.04 100 1 0.5 0.4 0.5
(M ◦ S)−1 White noise -10.39 -8.77 100 0.8 0.1 0 0.5
(M ◦ S)−1 Logistic* -12.65 -7.53

Practical M ◦ S White noise -13.41 -16.11 300 1 0.05 0 0.95
(M ◦ S)−1 White noise -8.35 -8.73 300 1 0.05 0 0.95

TABLE II
OPTIMIZED PARAMETER VALUES AND INTERMEDIATE EXPERIMENTAL RESULTS. Et IS THE ENERGY OF THE TARGET SIGNAL. * THIS SYSTEM WAS

TRAINED ON WHITE NOISE AND TESTED ON LOGISTIC CHAOTIC NOISE.

VII. CONCLUSION

In comparison with the genetic algorithms, our approach has
some major improvements. Firstly, it takes just one experiment
of a couple of seconds to train the whole system whereas
genetic algorithm experiments take as long as the entire
evolution which can easily be 15 minutes or more. Secondly,
our approach is better in modelling the system for white
noise as input signal. This model also turns out to generalize
quite well for other signal types. This generalisation is an
important property for practical systems, because it is unlikely
that a noise source stays the same forever. Even for easy
noise sources like fans, changes in the environment or ageing
influences their nature. A final conclusion is that simplified
setups in home environments turn out to be linear.

There are still a lot of improvements possible for enhanc-
ing our approach. Firstly, it would be interesting to see if
performance could improve by feature engineering. Now, the
reservoir has only one input (the most recent sample), but this
could be replaced for example by a filter bank. Secondly, since
the reservoir readout is standard ridge regression, techniques
could be investigated to iteratively update the readout weights
in order to adapt to new situations. This is necessary when
the subsystems (P , S and M ) are influenced by changing
conditions. Finally, a predictor should be added to the system.
It is possible that the reservoir itself could act as predictor [20],
[21] and at the same time model the system. This combining
would result in a compact model that requires a limited amount
of resources.
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