
Design of an Autonomous Software Platform
for Future Symbiotic Service Management

Tim De Pauw∗†, Nelson Matthys‡, Bruno Volckaert∗, Veerle Ongenae†, Sam Michiels‡, and Filip De Turck∗
∗Department of Information Technology (INTEC), Ghent University – IBBT, 9050 Ghent, Belgium

†Faculty of Applied Engineering Sciences (INWE), University College Ghent, 9000 Ghent, Belgium
‡IBBT – DistriNet, Department of Computer Science, KU Leuven, 3001 Heverlee, Belgium

Email: tim.depauw@intec.ugent.be, nelson.matthys@cs.kuleuven.be

Abstract—Nowadays, public as well as private communication
infrastructures are all contending for the same limited amount
of bandwidth. To optimally share network resources, symbiotic
networks have been proposed, which cross logical and physical
boundaries to improve the reliability, scalability, and energy effi-
ciency of the network as a whole as well as its constituents. This
paper focuses on software services in such symbiotic networks.
We propose a platform for the intelligent composition of services
provided by symbiotically connected parties, resulting in novel
cooperation opportunities. The platform harvests Semantic Web
technology to describe services in a highly expressive manner,
and constructs service compositions using SeCoA, our tunable
best-first search algorithm. The resulting compositions are then
enacted via CaPI, a reconfigurable middleware infrastructure.
By means of an illustrative scenario, we provide further insight
into the platform’s functioning.

I. INTRODUCTION

Over the past few years, home and office environments
have seen their numbers of coexistent networks rise dramati-
cally. [1] Many if not all premises nowadays are equipped with
several wired or wireless Ethernet networks, ZigBee-based
home automation networks, and so forth. Add to that public
communication infrastructures based on 3G and 4G, and the
result is a veritable overload of networks which are ultimately
all contending for the same limited amount of bandwidth. This
phenomenon will only be exacerbated, calling for an ingenious
approach toward sharing the available resources.

Recently, the research community introduced the concept of
symbiotic networks [2]. Building upon cognitive networking
technology [3], their goal is to allow coexisting networks to
communicate transparently across layers and both physical and
logical boundaries. This results in cooperation schemes not
unlike those of symbiotic organisms. Hence, the envisaged
symbiotic networks are highly cooperative and autonomously
managed. By handling the available resources more prudently,
the aim is to make great strides in terms of scalability,
dependability, and energy efficiency, both for the symbiotic
network as a whole and for its constituents.

In this paper, we start from the assumption that symbiosis
has been established at the infrastructural level, and the
networked resources are shared in an efficient manner. In
result, the same sort of symbiosis can take place at a higher
level. Specifically, software services provided by various par-
ties engaging in symbiosis can be shared in a transparent

manner as well. By stringing together services which were
previously unaware of each other’s existence, so-called service
compositions can expose richer sets of functionality.

However, neither the construction of such symbiotic service
compositions, nor their enactment inside the network, is a
trivial task. The symbiotic federation of network environments
is subject to additional constraints caused by the increased
heterogeneity of vocabularies, interaction paradigms, and so
forth. Additionally, the dynamicity of symbiotic networks
allows for on-the-fly introduction and removal of devices and
their services, calling for mechanisms to autonomously relo-
cate and reconfigure software components. In this paper, we
propose a software platform which facilitates the construction,
enactment, and management of software service compositions
in symbiotic network environments.

II. PROBLEM STATEMENT

To enable the construction and enactment of service compo-
sitions in symbiotically interoperating networks, we envisage
research challenges in three main areas.

First, symbiotic environments are subject to vast heterogene-
ity. Different networks expose different services, with specific
APIs, data types, and usage constraints. They may be running
on different classes of devices, from resource-rich to resource-
constrained, like in the case of wireless sensor network (WSN)
nodes. To allow for their mixing and matching inside a service
composition, there is a clear need for in-network description
of services and automated service discovery based upon it.

Second, the software services provided in symbiotic net-
works each possess their own objectives, be they functional
or non-functional in nature. When symbiosis is established,
such objectives need to be aligned. Devices and services may
however arrive and depart at any time, which may be beneficial
or adverse. Autonomous symbiotic service composition mech-
anisms therefore require periodic feedback from the network.

Third, computed service compositions need to be enacted
across all networks involved in the symbiosis. The process
of enactment includes a number of activities, such as the
mapping of the composition to concrete software artifacts, the
installation of these artifacts, and their dynamic reconfigura-
tion. Hence, enactment demands custom middleware solutions
which allow the resources involved to be sufficiently dynamic.978-1-4673-0269-2/12/$31.00 c© 2012 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. SOLUTION ARCHITECTURE

The architecture of the software platform we propose for
the construction, enactment, and life cycle management of
symbiotic service compositions is visualized in Fig. 1. At the
highest level, it consists of two main components.

The first component, Service Composition, deals with the
descriptions of individual software services provided by sym-
biotic networks, and uses them to construct compositions. Har-
vesting Semantic Web technology, services and their context
are described in a highly expressive fashion. This allows for
a versatile policy mechanism to govern service interaction.

The produced functional service compositions are passed
to the second component, entitled Composition Enactment.
This component deals with the infrastructural needs of the
platform. It translates a composition to a set of interconnected
software artifacts, deploys them on the resources at hand, and
ensures their proper operation. Vital information pertaining to
the infrastructure is passed back to the Service Composition
component, giving rise to a feedback loop.

Service Composition Composition Enactment

Artifact
Selection

Reconfigurable
Middleware

Platform

Discovery
and

Monitoring

Service
Modeling

Semantic
Service

Composition

Policy
Application

E
n
a
ct
m
en
t

F
e
ed
b
a
ck

Fig. 1. High-level overview of the platform architecture

IV. ILLUSTRATIVE SCENARIO

In what follows, we will detail our platform’s main compo-
nents. To further clarify their inner workings, we will apply
our approach to an illustrative scenario based on real-life
challenges from the field of cargo transport and logistics:

A warehousing facility stores cargo supplied
by several logistics providers, who wish to en-
sure proper handling of the goods. Specifically,
the warehouse offers climate-controlled storage and
allows logistics providers to consult the status of
their cargo at all times. The cargo itself is fitted
with wireless sensor equipment, which exposes the
current temperature of the goods along with their
unique identification code. Warehouse personnel are
informed of the cargo’s temperature through a cen-
tral administration interface, but may also read it
from dedicated displays, mounted near the cargo.
An external cargo tracking service is periodically
updated with additional information provided by the
sensor device, allowing the owner of the goods to
ensure that they are intact. Communication with
this tracking service occurs over the public Internet.
Additional measures are therefore taken to maintain
the confidentiality of cargo information.

As mentioned, we rely on Semantic Web technology. Specif-
ically, the problem domain is modeled using the Web Ontology
Language (OWL), such that service providers can employ the
OWL-S ontology [4] to describe their offering.

Let us assume that the wireless sensors mounted on the
goods expose their temperatures in degrees Fahrenheit. This
leads to the introduction of the OWL class FahrenheitTemper-
ature. The warehouse, on the other hand, only understands
instances of the CelsiusTemperature class. To describe the
information which will need to be provided to the external
cargo tracking service, we define the CargoInformation class.

Moving on to a high-level representation of the services
involved in the scenario, we now build upon the OWL-S
ontology to define the services potentially involved in our
compositions, as well as their input and output parameters.
• As is often the case, we assume that the sensor hardware

fitted on the cargo can be manufactured by various parties,
each with their own software interfaces. Let us define the
fictitious sensor device manufacturers Acme Corp., Sirius
Cybernetics, and Mom’s Friendly Sensor Company. A
sensor device from Acme exposes the AcmeCorpDataPro-
visioning OWL-S service, with a single output parameter,
whose type is the OWL class AcmeCorpSensorMessage.
A similar naming scheme is used for the other two
manufacturers. One such DataProvisioning service will
serve as the initial service of the composition.

• Each type of SensorMessage can be analyzed by a spe-
cific DataProcessing service. Information from an Acme
Corp. sensor, for instance, is fed to the AcmeCorpData-
Processing service, which has two output parameters: a
FahrenheitTemperature and a piece of CargoInformation.

• The goal service will be CargoQualityAssurance, which
takes three confirmation messages as its input. The first,
of the type TemperatureVisualizationConfirmation, states
that the temperature has been visualized on the dedicated
displays. Similarly, a TemperatureVerificationConfirmation
confirms that the temperature has been processed by the
climate control system, and that appropriate action was
taken to ensure the proper temperature for the cargo.
Finally, a TrackingConfirmation message states that the
tracking service was informed. Respective services en-
titled TemperatureVisualization, TemperatureVerification,
and CargoTracking provide these message types.

• The TemperatureVisualization and TemperatureVerification
services only understand the Celsius scale. Thus, their re-
spective input parameters are of the type CelsiusTemper-
ature. To cope with the Fahrenheit temperature readings
provided by the sensors on the goods, the warehouse pro-
vides a TemperatureConversion service, with transforms
its input CelsiusTemperature to a FahrenheitTemperature.

• The CargoTracking service takes CargoInformation as its
input. As mentioned, it is external to the warehouse’s
service infrastructure. To model this, we introduce the
OWL class AdministrativeDomain, and the object property
belongsTo to link services to domains. This information
will be used to construct policies.

V. SERVICE COMPOSITION CONSTRUCTION

As outlined in the previous section, our platform’s Service
Composition component manages functional descriptions of
services provided in symbiotic networks, and uses them to
construct rich compositions. We will clarify our approach by
applying it to the illustrative scenario. For a formal description
of our composition algorithm SeCoA, we refer to [5].

SeCoA constructs service compositions by starting from a
goal service and satisfying input parameters via backward
chaining. The algorithm terminates when the initial service
has been reached. Let us apply this to our scenario, assuming
we are dealing with an Acme Corp. sensor and therefore an
AcmeCorpDataProvisioning service.

Our goal service is CargoQualityAssurance, so SeCoA will
start by creating a partial composition containing only that
service. This composition is placed on SeCoA’s priority queue,
only to be immediately processed. In each processing step of
the algorithm, an attempt is made to satisfy the next remaining
input parameter in the composition at the head of the queue.

There are three input parameters in the first partial com-
position, namely those of CargoQualityAssurance. The first,
TemperatureVisualizationConfirmation, is only provided by the
TemperatureVisualization service. Therefore, the latter is added
to the composition, resolving the input parameter. The result-
ing partial composition is added to the priority queue and
subsequently examined, in the second processing step.

Examining that composition, there are still three unresolved
input parameters. One of them is the CelsiusTemperature
required by TemperatureVisualization. It can be resolved by
prepending TemperatureConversion to that service. Moreover,
as TemperatureVerification requires a CelsiusTemperature as
well, TemperatureConversion’s output can be reused.

Because resolving TemperatureVerification’s input did not
add any services to the composition, a favorable partial solu-
tion was produced. After all, the resulting partial composition
has fewer unresolved inputs than any other composition re-
maining in the queue. This is where SeCoA’s best-first search
comes into play: because of its lower amount of unresolved in-
puts, the partial composition where TemperatureConversion’s
output is shared receives a favorable score, and is given
priority over other compositions. This behavior can be further
influenced by tuning SeCoA’s parameters.

Next, the algorithm will search for a service providing
either a FahrenheitTemperature or CargoInformation, both of
which result in three candidate services: AcmeCorpDataProc-
essing, SiriusCyberneticsDataProcessing, and MomsFriendly-
SensorDataProcessing. For all three, a partial composition is
placed on the queue. Two of these queue entries will however
result in a dead end; for instance, SiriusCyberneticsDataPro-
cessing requires a SiriusCyberneticsSensorMessage input,
which is not available. Eventually, the composition containing
AcmeCorpDataProcessing will however be encountered and
extended with AcmeCorpDataProvisioning. As the latter is the
initial service and all input parameters in the composition have
been resolved, the algorithm will terminate successfully.

Having constructed a satisfactory service composition, the
SeCoA algorithm examines each transfer of a parameter value
to see if it matches any of the policies defined. This way, non-
functional requirements are expressed and satisfied. Policies
are written in SWRL, the Semantic Web Rule Language [6].

In our example scenario, two such policies exist. The first
ensures confidential communication between the warehouse
and the external tracking service. The policy, which relies on
our belongsTo object property, looks as follows:

(belongsTo(Provider, Warehouse) ∧ belongsTo(Consumer, CargoTracking))
∨ (belongsTo(Provider, CargoTracking) ∧ belongsTo(Consumer, Warehouse))

⇒ apply EncryptionFilter to ProvidedParameter
and apply DecryptionFilter to ConsumedParameter

Note the use of four SWRL variables, printed in italics,
pertaining to the services involved in the parameter exchange.

The second policy states that data processing services must
deliver their results with high accuracy, by sampling mea-
surements over time. Assuming AcmeCorpDataProcessing and
its two siblings are subclasses of DataProcessing, the reader
familiar with SWRL should be able to devise the policy which
applies SamplingFilter to the appropriate input parameters.

Applying both policies results in the filter-augmented graph
in Fig. 2, which is also the result of the composition phase.

Temperature
Conversion

Temperature
Visualization

Temperature
Verification

Cargo
Tracking

AcmeCorp
DataProcessing

Cargo
QualityAssurance

“Temperature visualized” “Temperature verified” “Tracking confirmed”

CelsiusTemperature CelsiusTemperature

FahrenheitTemperature

Encryption

Decryption

AcmeCorp
DataProvisioning

AcmeCorpSensorMessage

Sampling

Encryption

Decryption

CargoInformation

Fig. 2. Service composition produced by applying the SeCoA algorithm to
the illustrative scenario described (with policies applied)

VI. SERVICE COMPOSITION ENACTMENT

The platform’s Composition Enactment component supports
the composition process by gathering information about the
symbiotic network, enacting the compositions constructed by
SeCoA by selecting the appropriate software artifacts, and
subsequently reconfiguring the underlying infrastructure.

Based on information obtained from the symbiotic infra-
structure, compositions produced by the Service Composition
component are translated to combinations of software artifacts.
A service is not necessarily mapped to a single artifact. For
instance, if TemperatureConversion were implemented by a
SOAP Web Service, AcmeCorpDataProcessing would need a
SOAP client as well as its actual processing logic.

A reconfigurable middleware present on every symbiotic
device allows for deployment and run-time reconfiguration of
individual software artifacts. We defined CaPI, a Component
and Policy Infrastructure for networked embedded systems.
CaPI is a lightweight, runtime reconfigurable middleware fea-
turing the combination of a component model, LooCI [7], and
a framework for policy-based system management, PMA [8].
In CaPI, symbiotic services are encapsulated through LooCI
components, communicating in a loosely coupled fashion with
each other via asynchronous events. Components in CaPI can
be dynamically deployed, removed, or rewired. Subsequently,
PMA policies define an abstraction to separate behavioral
concerns of LooCI components from their implementation.
Policies are implemented using a declarative policy language
featuring an Event-Condition-Action paradigm. At runtime,
policies are enforced by intercepting event communication
between components, and applying actions to that flow. For
example, concerns such as security or reliability can be easily
specified using PMA policies and enforced in response. Sim-
ilar to LooCI components, PMA policies can be dynamically
deployed, removed, activated, or deactivated. Finally, CaPI
provides mechanisms to discover the set of components and
policies present inside every network.

VII. RELATED WORK

Since the emergence of OWL-S, composition of Semantic
Web Services has been a popular research topic. Several
composition tools have been proposed. [9]–[11] Symbiotic
networks, however, introduce an additional set of constraints
not foreseen by these utilities, as discussed in Section II.
SeCoA attempts to take these constraints into account early, as
well as avoid the intermediate model transformations required
by some tools. SeCoA policies are currently rather limited;
one possible extension would be conflict resolution [12].

Reconfigurable middleware is a critical element for large-
scale and long-lived distributed systems. Recently, reconfig-
urable component models [13], [14] and policy-driven mid-
dleware [15] have been introduced to build and manage appli-
cations involving resource-constrained devices. However, these
approaches typically adopt a tightly coupled style of system
composition or lack flexibility in run-time reconfigurability.
CaPI approaches the requirements of symbiotic networks by
offering more flexibility in run-time reconfiguration via loosely
coupled components and dynamically reconfigurable policies.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced a software platform architecture for the
autonomous management of service compositions in symbiotic
network environments. Relying on Semantic Web technology,
highly expressive service profiles are used to construct ser-
vice compositions, by means of SeCoA, our tunable best-
first search algorithm. These compositions are tailored to
the infrastructure and subsequently enacted, relying on our
reconfigurable middleware platform CaPI. Through a typical
scenario, we illustrated key features of our architecture.

In future research, we will be employing the OWL-S
ontology’s descriptions of service preconditions and effects to
create richer compositions. We will also further define mech-
anisms for mapping high-level compositions to infrastructure-
aware software artifact combinations. In particular, we want
to clearly quantify the cost in terms of reconfiguration of
every combination of artifacts resolved. Hence, we plan a more
detailed evaluation of the two types of artifacts CaPI provides.

ACKNOWLEDGMENTS

Tim De Pauw would like to thank the University College Ghent Research
Fund for financial support through his Ph.D. grant. This research is partially
funded by the Interuniversity Attraction Poles Programme of the Belgian State
of the Belgian Science Policy, the Flemish Agency for Innovation by Science
and Technology (IWT Vlaanderen), and the KU Leuven Research Fund. Part
of this work has been funded by the IWT-SBO-SymbioNets project.

REFERENCES

[1] D. A. Willis, “Hype cycle for networking and communications,” Gartner,
Inc., Tech. Rep. G00216400, Aug. 2011.

[2] E. De Poorter, B. Latré, I. Moerman, and P. Demeester, “Symbiotic net-
works: Towards a new level of cooperation between wireless networks,”
Wireless Personal Communication, vol. 45, pp. 479–495, June 2008.

[3] F. H. P. Fitzek and M. D. Katz, Cognitive Wireless Networks: Concepts,
Methodologies and Visions Inspiring the Age of Enlightenment of
Wireless Communications, 1st ed. Springer, 2007.

[4] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith et al. (2004) OWL-S: Semantic Markup for Web Services. World
Wide Web Consortium. [Online].

[5] T. De Pauw, B. Volckaert, V. Ongenae, and F. De Turck, “SeCoA:
Autonomous semantic service composition algorithm in symbiotic net-
works,” in Proc. IFIP/IEEE Network Operations and Management Sym-
posium (NOMS 2012), Maui, HI, USA, 2012, submitted for publication.

[6] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. (2004) SWRL: A Semantic Web rule language combining
OWL and RuleML. World Wide Web Consortium.

[7] D. Hughes, K. Thoelen, W. Horré, N. Matthys, P. J. del Cid Garcia,
S. Michiels, C. Huygens, W. Joosen, and J. Ueyama, “Building wireless
sensor network applications with LooCI,” Journal of Mobile Computing
and Multimedia Communications, vol. 2, no. 4, pp. 38–64, 2010.

[8] N. Matthys, C. Huygens, D. Hughes, J. Ueyama, S. Michiels, and
W. Joosen, “Policy-driven tailoring of sensor networks,” in Sensor Sys-
tems and Software, Revised Selected Papers. LNICST, vol. 51. Springer,
2010, pp. 20–35.

[9] M. Klusch, B. Fries, and K. Sycara, “Automated Semantic Web Service
discovery with OWLS-MX,” in Proc. 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (ACM AAMAS-06),
Hakodate, Japan, 2006, pp. 915–922.

[10] M. Klusch, A. Gerber, and M. Schmidt, “Semantic Web Service com-
position planning with OWLS-XPlan,” in Proc. AAAI Fall Symposium
on Semantic Web and Agents, Arlington, VA, USA, 2005.

[11] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN planning
for Web Service composition using SHOP2,” Web Semantics: Science,
Services and Agents on the WWW, vol. 1, no. 4, pp. 377–396, 2004.

[12] J. Barron, S. Davy, and B. Jennings, “Conflict analysis during author-
ing of management policies for federations,” in Proc. 1st IFIP/IEEE
Workshop on Managing Federations and Cooperative Management
(ManFed.CoM 2011), Dublin, Ireland, 2011.

[13] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan, “A generic component model for building systems
software,” ACM Trans. Comput. Syst., vol. 26, pp. 1:1–1:42, March 2008.

[14] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and
S. Zachariadis, “Reconfigurable component-based middleware for net-
worked embedded systems,” International Journal of Wireless Informa-
tion Networks, vol. 14, no. 2, pp. 149–162, 2007.

[15] Y. Zhu, S. Keoh, M. Sloman, E. Lupu, N. Dulay, and N. Pryce, “Finger:
An efficient policy system for body sensor networks,” in Proc. 5th IEEE
International Conference on Mobile Ad-hoc and Sensor Systems (MASS
2008), September 2008.

