View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Ghent University Academic Bibliography

Coreference detection of low quality objects

Joachim Nielandt', Antoon Bronselaer! and Guy De Tré!

Ghent University, Belgium
Document, Database and Content Management
{joachim.nielandt,antoon.bronselaer,guy.detre}@telin.ugent.be

Abstract. The problem of record linkage is a widely studied problem
that aims to identify coreferent (i.e. duplicate) data in a structured data
source. As indicated by Winkler, a solution to the record linkage problem
is only possible if the error rate is sufficiently low. In other words, in order
to succesfully deduplicate a database, the objects in the database must be
of sufficient quality. However, this assumption is not always feasible. In
this paper, it is investigated how merging of low quality objects into one
high quality object can improve the process of record linkage. This gen-
eral idea is illustrated in the context of strings comparison, where strings
of low quality (i.e. with a high typographical error rate) are merged into
a string of high quality by using an n-dimensional Levenshtein distance
matrix and compute the optimal alignment between the dirty strings.
Results are presented and possible refinements are proposed.

Keywords: object merging, string merging, error reduction

1 Introduction

In today’s age, handling large amounts of data is becoming more and more
important. Whether we are talking about databases, raw text files, data trans-
missions or images, they are all stored and transmitted in massive quantities.
With the rise of Web 2.0 a lot of this data is becoming user-generated which is
less subject to quality control. Due to this fact we are faced with an abundance of
errors and coreferent (i.e. duplicate) information. The elimination of such coref-
erent information is called record linkage and it is pointed out by Winkler [9]
that this is only possible if the data in question meet some minimal constraints.
One of these constraints is that “the amount of (typographical) errors should
be low”. However, in practical situations, this constraint is not always feasible.
As an example, consider the case of person identification based on biometrical
data. The collection of such biometrical data (for example for pictures) can be
a process that suffers from a high error rate. Indeed, if we are provided with
an image of low quality, the extraction of features is guaranteed to be of low
quality too. However, it is a low cost operation to collect several images of the
same person. This means that we can easily be provided with a collection of
pictures (i.e. objects) that we know to be coreferent. If we succeed to merge the
extracted features of this collection into features of high quality, the process of

https://core.ac.uk/display/55823307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

record linkage becomes possible. In this paper we use single strings as an example
to illustrate this reasoning, in the sense that we take a string and contaminate
it with random operations to generate a set of dirty duplicates. We investigate
how we can combine the knowledge of this duplicate information into a cleaner
(if not perfect) version.

In Section 2, a couple of concepts are explained that are used in the rest of the
paper. In Section 3, the problem of record linkage and the Winkler constraints are
given in depth. In Section 4, we propose a solution to solve the merging problem
for strings while detailing some results and comparing different settings. Future
work is discussed in Section 5, regarding improvements on the current solution
and different approaches that could be used, while in Section 6 we offer the
conclusion of the paper.

2 Preliminaries

In this section some concepts will be explained that are necessary to comprehend
the rest of this paper. First we will talk about how we compute distances (and,
accompanying those, alignments) between two character strings. After that, we
explain how we extend this method to n strings.

2.1 Levenshtein distance and alignment

Modifying a string can be done in different ways. When considering the Le-
venshtein edit distance [6] there are three possible operations: substitutions (one
character morphs into another), insertions (a character is inserted) and deletions
(a character is deleted). When we consider two strings s; and s of respective
lengths m and n we can compute the minimal amount of these operations we
need to convert s; into ss.

The standard Levenshtein edit distance algorithm constructs an n x m matrix
d in which the minimal distance can be read in cell d[n, m]. We can also perform
a traceback through this distance matrix to determine which path leads to the
optimal result. Using this traceback we can build an alignment between s; and
s2 as shown in Example 1 (mentioned indices refer to the example):

— When considering a substitution: nothing changes (e.g. indices 12 and 20),

— When considering a deletion in s; we have to make sure to add an alignment
character at that position (e.g. index 14),

— When considering an insertion in s; we have to add an alignment character
at the same position in so (e.g. index 1).

2.2 N-Dimensional variation

The standard Levenshtein algorithm is the basis for the string alignment we
need. However, to accomodate the merging of more than two strings we have

Example 1 Levenshtein alignment for sy (top string) and ss (bottom string),
with character indices underneath

arnie morton’*s of 6hicago
*rnie mortow’Qs of chicago

12345678901234567890123456

implemented an n-dimensional variant, based on the three-dimensional align-
ment using the sum-of-pairs score described in [4].

The pseudocode to construct the n-dimensional distancematrix d can be seen
in Algorithm 1, where we start by filling out the 0-dimensional cell (situated in
(0,0,...,0)) and the 1-dimensional cells where only one index is nonzero. Using
these we can fill in the 2-dimensional cells (where 2 indices are nonzero), after
which we proceed with the rest of the matrix. We use the n-vector di as an index
to access d, where di;—; j—2 indicates that the it element of di has a value of 1
and the j** element has a value of 2, while all the other elements have value 0.
If we then use di to access d we note it as d[di;=1, j=2], which will result in the
cell that is situated on the first level of the i*” dimension, the second level of the
jt" dimension and the zero” level of the rest of the dimensions.

The n strings that are aligned with the algorithm are denoted as s1, sa, ..., Sn,
while the k" character of the [*" string is denoted by s;[k]. The different penalties
that can be assigned are ppmss, Pspace and Dmaten (respectively the penalties to
have a character mismatch, to introduce a space in one of the strings and to
have a correct match between characters). Within the scope of this paper we use
respectively 1, 1 and 0 as the values for these variables.

As a final note on how to understand Algorithm 1: lines 31 to 37 show the
construction of r = (72’) — 1 variables, using induction. There are r = Z;é (Z)
possible combinations of indices to access d, excluding the combination where all
the indices are present. For every one of these combinations we take the chosen
indices and take their values as they are (as opposed to the standard subtraction
by 1). For example, for ve the chosen combination was {i,}, so only the value
of this index remains as it is, whereas the values of all the rest are subtracted
by 1. A special case is vy, where the chosen combination of indices is empty.

Traceback As with the standard Levenshtein algorithm we keep track of which
path results in the minimal cost alignment so we can trace back our steps and see
how we came to that optimal result. When tracing back through the distance-
matrix we rebuild all the strings, going from the end to the beginning, resulting
in aligned strings as;,1 < ¢ < n with exactly the same length. We start at the
end of the matrix: the value in cell dy, j,,...;,. We know which other cells could
have resulted in this value so we pick one of these and see which indices have
changed. If an index i; has changed we know that a step has been made in the
related string s so we append the relevant character to asy. For the string /

index combinations that have remained the same we append an alignment char-
acter instead. This ensures that, for every step we make in the distance matrix,
the aligned strings grow with 1 character, either by appending an alignment
character or a character from the source string.

3 Record linkage

As mentioned in the introduction, the problem at hand is that of record link-
age([3], [2]), where two collections A and B of objects are given. The goal of
record linkage is to find couples of objects (a,b) € A x B such that a and b are
coreferent or duplicate. Winkler [9] states this is only possible when the following
five conditions are met:

The data should contain more than 5 percent of matches,

The matching pairs should differentiate themselves sufficiently from the other
pairs so they can be properly recognized,

The amount of typographical errors should be low,

— There is sufficient redundancy in the data to compensate for the errors,
Estimates computed under the assumption of conditional independence re-
sult in a good classification. Within the context of this paper, we shall soften
the third condition. More specific, the assumption that objects in A and B
are of relative high quality will be dropped. Instead, it will be assumed that,
for each object in A or B, we can easily collect a collection of coreferent
objects. For example, several pictures of the same person, who do not need
to be of high quality. We will show that by merging these collections, the
problem of low quality (i.e. high error rate) can be solved. For reasons of sim-
plicity, we shall not illustrate our reasoning with pictures, but with strings,
because the contamination of strings is easily controllable.

4 Proposal

In this paper we investigate how generic objects can be merged that describe
the same entity, while still differing from each other (due to some contamination
of the data). We use our running example to illustrate the problem: if we have a
restaurant’s name (e.g. arnie morton’s of chicago), it can be contaminated with
random substitutions, insertions and deletions:

Vrnie morton’s of Ycicago
arnWe ZmoPton’sGof chicago

These different descriptions of the same entity still contain a lot of data that
are similar to each other. This data could thus be used to merge the different
contaminated objects to try and recover the original description of the entity.

As a testing platform we focus on strings in particular, which we extracted
from the widely used (e.g. [1, 5, 7]) database containing restaurants. This database
was authored by Sheila Tejada [8] and can be retrieved freely from the site of the

Algorithm 1 N-Dimensional distance matrix

1: doy,....0:=0

2: 1-dimensional cells

3: fori:=1—ndo

4 ddii=1] :=1

5: end for

6:

7: 2-dimensional cells

8: for iindex :=0 —n —2 do

9: for jindex = iindex +1 —n —1do

10: for 1 = 0...liindes do

11: v1 := d[diiindes=i—1,jindex=j—1] + Pmiss

12: V2 1= d[diiindea::i,jindeac:jfl} +1

13: v3 = d[diiindez=i—1,jindex=3] + 1

14: d[disindes=i,jindex=j] = min(vi, v2,v3) + (((iindez + tjindex) * Pspace
15: end for

16: end for

17: end for

18:

19: Non-boundary cells
20: for i; :=1—1; do
21: for io ;=1 — [l> do

22:
23: for i, :=1—1, do
24: for iinder :=1 —n —1 do
25: for jindexr := iindexr + 1 — n do
26: Ciindex,jindex +— Pmiss
27: if Siindex[iiindex] = Sjindex [ijindeac] then
28: Ciindex,jindex = Pmatch
29: end if
30: r=305 ()
31: V1 = diy—1,i0—1,.. in—1
+Ciyyio t Civyig + oo+ Cipy_qip
32: V2 1= iy —1i0—1,...ip_1—1yin
+Ciy i + Ciryis + oo F Cipy_oyin_1 + (0 — 1) * Pspace
33: V3 1= iy —1,i0—1,...ip_1,in—1
+Cityis + Ciryig + oo+ Ciy_gyin + (N — 1) * Pspace
34:
35: V2+4n 1= dil—l,iz—l,.“,in,l—l,in—l
+Ciryin + Ciyyig + o F Cipy_gyin_o T (M — 1) * Pspace
36:
37: Vpr = dil—l,ig,m,in,l,in + (Tl - 1) * Pspace
38: diyig,...sin = min(vi, vz, ..., vr)
39: end for
40: end for
41: end for
42: end for

43: end for

RIDDLE project!. Within this set only the restaurants that originated from the
website Fodor’s were used. First tests focus on just comparing the restaurant’s
names (from hereon described as strings). We use an n-dimensional distance
matrix to compute the minimal cost of transforming the strings to each other,
thus allowing us to also compute an optimal alignment of all the strings (MSA?
solution). By aligning the characters that are most likely to describe the same
original (in the clean, non-contaminated string) character we can then make a
decision regarding which of the contaminated characters is the correct one. This
leads to a merged, cleaner version of the string.

4.1 Methodology

Generating data Using the database of restaurant names we generate a couple
of datasets:

— Clean dataset: the original list of restaurant names,

— Dirty dataset: the clean dataset, but randomly contaminated with substitu-
tion, insertions and deletions,

— Dirty merge dataset: equivalent to the dirty dataset, but now we generate a
list of dirty strings for every clean string in the clean dataset.

When randomly contaminating strings we take into account a number of possi-
bilities: every character has a pgrty chance of being transformed. In the case of
a transformation we have three possibilities (that sum up to 1): pinsert, Ddeletion
and psupstitution- Lhese different possibilities can be given preference over each
other to facilitate further testing.

Matching results In our tests we compare a list of clean data with a list of
dirty data (merged or not). One of the constraints on the data is that we know
that there has to be a correct mapping from every clean item to the appropriate
dirty item and that these items exist.

We compare every clean item to every dirty item, thus creating a list of m?
couples. Out of these m? couples, m are the correct ones. This list of couples is
sorted according to a similarity measure simg,. we calculated, using the dirty
and clean string as input. If d. 4 is the Levenshtein distance between a clean
string s, and a dirty string sq and [. and [4 are the lengths of the clean and
dirty string respectively we can write simg . as:

_ dea (1)
maz(le,lq)

By comparing the merged dirty strings to the originals we can find out how
accurate we can still do an m — to — m mapping, thus giving us a measure of

how much correct information we obtain after merging contaminated objects.

SiMg,c =

! RIDDLE - Repository of Information on Duplicate Detection, Record Linkage, and
Identity Uncertainty
http://www.cs.utexas.edu/users/ml/riddle/data.html

2 Multiple sequence alignment

4.2 Examples

In this section we will give a quick merging example. We present a clean string,
together with its dirty versions and merged result. We use the same strings that
were used in the tests whose results are reported in Section 4.3. The clean string

Arnie morton’s of chicago

was contaminated with random operations which resulted in a list of dirty
versions:

awnie mortoDn’s of nchicago
arnie morton’s of 6hicago
rnie mortow’(Qs of chicago
arnie Zmorton’s of chicagk

Using the n-dimensional distance matrix calculated for these strings an op-
timal alignment was found (we use the character “*” as an alignment character
when needed):

awnie *mortoDn’*s of nchicago
arnie *morto*n’*s of *6hicago
*rnie *morto*w’(Qs of *chicago
arnie Zmorto*n’*s of *chicagk

For every index in the strings we check the most occurring character. For
index O this is a, for index 1 it is r, etc... After merging the aligned strings
by constantly choosing the most occurring character for every index we get the
clean string as a result: the settings used for contamination and the amount of
strings used were sufficient to provide us with a perfect merge that gave us the
original string as a result:

Arnie morton’s of chicago

4.3 Results

In this section we present some experimental results that were obtained using
the restaurant dataset.

As a first experiment we took the clean, dirty and merged datasets and
calculated how precise we could match the clean strings with the dirty and the
merged strings respectively. To match the m clean strings with the m dirty
strings we calculated the m? Levenshtein distances for every combination of two
strings. We sorted these in ascending order and then made an m—to—m mapping
from clean strings to dirty strings.

For the merged strings we used different dimensions (2, 3 and 4 dirty strings
for every clean string). These dirty strings were merged and matched in the
same way we did with the single dirty strings. Results are reported in Figure
4.3, where the x-axis denotes the chance for every character to be modified. It

is clear to see that merging two sources lowers the quality of the match, as we
cannot make informed decisions for the relevant characters, whereas more than
two strings provide more information about a certain character position which
makes it possible to improve upon the result obtained by matching a single dirty
string with a clean string.

100%

_— ;

90%
TS SN
70%

N

AN

60% — ===Clean

50% \ \ — e Merged 2
40% \ \ D Merged 3
30% \ \) Merged 4

AN

20%
10%

NG

0% T T T T T T T T
10% 20% 30% 40% 50% 60% 70% 80%

90% 100%

Fig. 1. Percentage of correctly matches strings for given dirtyChance settings.

In Figure 4.3 we present the precision - recall curves we generated for the
different dirtyChance settings (see legend), going from 10% (close to perfect
strings) to 100% (completely scrambled strings). The x-axis represents the recall
value and the y-axis represents the precision for the given recall. The precision
remains high for recall values of up to 0.4, when considering strings that have
been made dirty with dirtyChance < 40%.

5 Future work

In this section we discuss future steps we will take regarding this research, specif-
ically the current iteration in which we merge strings.

5.1 Improvements

The current workflow makes use of a naive implementation of an n-dimensional
Levenshtein distance matrix. As described in [4] there are a number of improve-
ments to be made when dealing with distances matrices with number of dimen-
sions > 2. These improvements would allow us to perform experiments on a
larger scale.

1 -
0,9 N —————— —10%

08 - —_—20%
07 - —30%
06 - — 0%
0,5

e 50%
0,4

0,3
0,2
0,1

= 60%
e 70%
w—80%

90%

Fig. 2. Precision recall curves for the different dirtyChance settings.

5.2 Different alignment methods

Instead of aligning all the strings at once there are ways of aligning them pairwise.
The first two strings are aligned and merged, after which this merged version is
aligned with the third string and so on. Early experiments with this approach
give reasonable results but are not yet error proof. It is a more efficient way
of merging strings though, so improvements with regards to the quality of the
merging would make the algorithm useful.

5.3 Dataset

This paper focuses on a synthetic database of restaurant names and their ran-
domly modified versions. Future tests will be performed on real-world databases
to test the influence of various error rate models.

6 Conclusion

In this paper we presented a way of dealing with incomplete information. More
specifically, we investigated the merging of strings that, ideally, should have been
identical to each other and of which the quality has been degraded. This can, for
example, be applied to the deduplication of a database that is populated with
coreferent objects. In that case, deduplication can only be achieved succesfully
if the objects are of reasonably good quality. By merging the coreferent objects
into a new object of higher quality we make this requirements less immediate,
as we can eliminate most of the errors that are present. We showed that, when
using the information of three or more of these strings, the merged string re-
sembles the original string better than the individual ones. This initial research
on merging strings will allow us to better understand the concept of merging
generic coreferent objects.

10

7 Acknowledgements

We would like to thank FWO (Fonds Wetenschappelijk Onderzoek / Research
Foundation Flanders) for their support and making this project possible.

References

1. Bilenko, M., Mooney, R.J.: Learning to combine trained distance metrics for dupli-
cate detection in databases. Tech. rep. (2002)

2. Bronselaer, A., Hallez, A., De Tré, G.: Extensions of fuzzy measures and the sugeno
integral for possibilistic truth values. International Journal of Intelligent Systems
24(2), 97-117 (2009)

3. Fellegi, I., Sunter, A.: A theory for record linkage. American Statistical Association
Journal 64(328), 1183-1210 (1969)

4. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA (1997)

5. Lehti, P., Fankhauser, P.: Probabilistic Iterative Duplicate Detection. In: Meersman,
Robert and Tari, Zahir (ed.) On the Move to Meaningful Internet Systems 2005:
CooplS, DOA, and ODBASE, Lecture Notes in Computer Science, vol. 3761, pp.
1225-1242. Springer Berlin / Heidelberg (2005)

6. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and re-
versals. Tech. Rep. 8 (1966)

7. Ravikumar, P.;, Cohen, W.W.: A hierarchical graphical model for record linkage.
In: Proceedings of the 20th conference on Uncertainty in artificial intelligence. pp.
454-461. UAI ’04, AUAI Press, Arlington, Virginia, United States (2004)

8. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for in-
formation integration. Information Systems 26, 607-633 (2001)

9. Winkler, W.E.: Methods for record linkage and bayesian networks. Tech. rep., Series
RRS2002/05, U.S. Bureau of the Census (2002)

