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Abstract

This paper describes a new sequential sampling algorithm for
efficient and accurate scalable macromodeling of parameterized
frequency responses of high-speed systems. The proposed al-
gorithm divides the design space into hyper-rectangular cells.
A pertinent numerical example validates the capability of the
proposed sequential sampling method.

Introduction

The design of high-speed microwave systems often requires
multiple electromagnetic (EM) simulations to perform differ-
ent design activities such as design space exploration, sensi-
tivity analysis and design optimization, which is computation-
ally very expensive. An alternative approach is to generate ac-
curate scalable macromodels, which capture the parameterized
frequency behavior of these systems with respect to design pa-
rameters, such as layout and substrate features. These scalable
macromodels are computationally very cheap compared to EM
simulators, resulting in very effective speed-ups for such design
activities.

Scalable macromodeling of EM systems has attracted a lot
of attention during recent years [1, 2, 3, 4, 5]. However, one of
the key issues in these modeling approaches, rarely addressed
in the literature, is the optimal selection of data samples in order
to limit the total number of expensive EM simulations used as
initial data for the model construction.

A recent work on sequential sampling of scattering parame-
ter responses (S-responses) uses output S-responses along with
an exploration-exploitation-based approach [6]. In the explo-
ration phase, which explores the design space for unidentified
regions, a space filling technique is used to fill the design space
uniformly, whereas in the exploitation phase, which identifies
potentially interesting and dynamic regions of the design space,
a local estimate of the gradient is used to select new samples.

This paper describes a novel sequential sampling algorithms
for selecting the optimum number of samples such that accurate
scalable models for parameterized system responses can be gen-
erated. The method presented here is quite different from the
approach in [6], since the proposed algorithm is local and work
on local hyper-rectangular regions of the design space making it
applicable to several passivity-preserving scalable macromod-
eling methods [2, 3, 4, 5]. Moreover, the algorithm can be im-
plemented using tree structures, reducing the model evaluation
time and making it portable to parallel computing platforms.

Sequential sampling method

A sequential sampling algorithm should be able to extract
those system features which are most relevant in modeling its
behavior. The design space which consists of parameters such
as layout variables or substrate features is sampled so that the

generated model is accurate over the complete design space. In
this paper, a clear distinction is made between frequency and the
rest of the design parameters as the former has special charac-
teristics and is dealt separately. The selection of a suitable scal-
able macromodeling method to generate accurate models, the
main features of the proposed sequential sampling algorithm
and some other important aspects to be taken into considera-
tion for an efficient sequential sampling are described in what
follows.

Scalable macromodeling methods Different scalable macro-
modeling methods [2, 3, 4, 5] for which the proposed sequen-
tial sampling algorithm can be used, are briefly described here.
These scalable macromodeling methods start from a set of data

tot

samples {(s, &), H(s, g’)k}le, which depend on the complex
frequency s = jo and several design variables g = (g("))f;’:l.
From these data samples, a set of frequency-dependent rational
macromodels is built for some design space points by means
of the Vector Fitting (VF) technique [7, 8, 9]. A pole-flipping
scheme is used to enforce stability [7], while passivity assess-
ment and enforcement can be accomplished using the standard
techniques [10, 11]. This initial step results in a set of stable
and passive frequency dependent rational models, called root
macromodels.

The set of root macromodels are then parameterized with re-
spect to the design variables g with the help of stability and
passivity preserving interpolations schemes [2, 3, 4, 5]. In [2],
the root macromodels are interpolated at an input-output level
which leads to the parameterization of residues with respect to
g. The modeling capability is further enhanced in the meth-
ods described in [3, 4] which interpolate system state-space ma-
trices, there by parameterizing both poles and residues. How-
ever the methods in [3, 4] are sensitive to the issues related to
the interpolation of state-space matrices. A recent passivity-
preserving parametric macromodeling method has been pro-
posed in [5], which uses an innovative passive interpolation of
root macromodels at an input-output level by means of a set
of amplitude and frequency scaling coefficients. It is able to
parameterize both poles and residues indirectly, avoiding the
interpolation of state-space matrices. In this paper, we use the
scalable macromodeling method of [5] to guide the sequential
sampling algorithm and to generate final scalable macromodels.

Core algorithm The proposed sequential sampling algorithm
preserves the hyper-rectangular nature of the design space grid.
From here on we refer to a hyper-rectangular region of the de-
sign space as a subspace. The algorithm assumes that, a scal-
able macromodel is prone to high modeling error at the center
of the subspace such that the subspace is divided if certain re-
quirements are not satisfied. For the description purpose, let
us consider a case with two design parameters (g(l)7 g(2>), for



which the design space is defined by four corners of a rectan-
gle as shown in Fig. 1.a. A scalable macromodel is built using
the corner frequency responses, and the accuracy of this initial
macromodel is calculated by comparing the actual frequency
response with the estimated frequency response at the center of
the design space (shown by the light gray circle in Fig. 1.b).
If the accuracy is not sufficient the design space is further di-
vided as shown in Fig. 1.b. This generates four additional child
subspaces or in general 2V child subspaces, where, N is the di-
mension of the design space. At this point the design space is
further sampled at several locations as shown by the white cir-
cles in Fig. 1.b to preserve the hyper-rectangular nature of the
design space. This is repeated until the modeling error satisfies
a predefined error threshold Acyy.
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Figure 1: Evolution of the design space during sampling.

As shown in Fig.1, the algorithm can be represented in a tree
structure with each circle representing a particular subspace.
The algorithm begins by defining a single subspace as in Figl.a
and then generates four child subspaces numbered from 2 to 5
as in Fig. 1.b. An intermediate step is shown in Fig. 1.c, where
the subspaces 2 and 5 divide to satisfy the error criteria, creating
child regions 6 to 9 and 10 to 13 respectively. The tree structure
of the final grid is shown in Fig. 1.d, where the gray circles rep-
resent the terminal subspaces of the design space. With a tree-
based implementation, there is a considerable gain in model
evaluation time if macromodels based on local scalable macro-
modeling schemes [2, 3, 4, 5] are used, as the terminal subspace
can be easily found through the branches. Another advantage

is that the algorithm is portable to parallel computing platforms
with further reduction of computing time.

Error and stopping criteria The number and distribution of
the selected design space points depend on the error criteria
selected, which play a critical role in the proposed sequential
sampling. In this work, the mean absolute error (MAE)

Pin Pou Nx o 4
Lty j=t1 il |Ri,j(5k,8) _Hi,j(sk»g)|
PinP()uth

with number of input ports P,, output ports P,, and fre-
quency samples N; is used to compare original and modeled
S-responses at the center of each subspace.
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Another important aspect of an efficient sequential sampling
method is to use good stopping criteria to terminate the algo-
rithm if the error thresholds are never satisfied. One obvious
choice would be to limit the number of design space points
generated by defining an upper bound. Another choice would
be to use a lower bound on the resolution of the design space
grid, e.g., by defining a lower threshold on the spatial increment
along each design space direction 0§ > 6gmin. For example, in
the case of layout parameters such as widths or lengths, it might
be possible to know the manufacturing precision which defines

0gmin- When it is not known, a relative threshold 6”&?111 can be
defined such that:
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Figure 2: Flowchart of the proposed sequential sampling.

Fig. 2 shows the complete flowchart of the proposed se-
quential sampling algorithm. The algorithm first generates a



set of root macromodels at the 2 corner points which define
the boundaries of the design space, which is used to build the
first scalable macromodel. Then as shown in Fig. 1, the design
space is refined using the sequential sampling algorithm. The
algorithm terminates once all the subspaces are checked for the
accuracy or the stopping criteria are met for those subspaces
which violate the accuracy requirement.

Numerical Simulation

Four coupled microstrips, shown in Fig. 3, are modeled,
where the spacing S between the lines and the length L of the
lines are chosen as the design variables in addition to frequency.
Table 1 shows the ranges of all parameters. The substrate is
chosen with relative permittivity & = 9.6 and thickness equal
to 0.125 mm

_ L

P, Ps
—» | -—

P, s P
—>| |-—

P:‘ IS P7
—] |-—

P, Is Py
—> |-—

Figure 3: Top view of the layout of four coupled microstrips.

Table 1: Design variables of four coupled microstrips.

Parameter Min Max
Frequency (freq) | 0 GHz 10 GHz
Spacing (S) 0.05 mm | 0.15 mm
Length (L) 5 mm 10 mm

The scattering matrix S(s,S,L) has been computed using the
ADS Momentum! software, and the number of frequency sam-
ples has been chosen to be equal to Ny = 51. Fig. 4 shows the
parametric behavior of the magnitude of S;(s,S,L) with re-
spect to L and frequency for S = 0.10 mm. Similarly, the para-
metric behavior of the magnitude of Sg; (s,S,L) with respect to
S and frequency is shown in Fig. 5 for L = 7.5 mm.

Matlab R2010a? is used to drive the ADS Momentum simu-
lations to generate S-responses which are then supplied to the
proposed sequential sampling algorithm. For the stopping cri-
terion, the minimum relative resolution & g‘r;i; has been chosen
to be equal to 0.05.

Table 2 shows the number of design space points generated
for varying levels of target accuracy in terms of the MAE (1).
As discussed previously, in the algorithm the validation points
are located at the geometrical center of each subspace (gray cir-
cles in Fig. 1).

The final design space generated using the proposed sequen-
tial sampling algorithm is shown in Fig. 6 for the accuracy level

'Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
2The Mathworks, Inc., Natick, MA, USA
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Figure 4: Parametric behavior of the magnitude of S for S =
0.10 mm.
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Figure 5: Parametric behavior of the magnitude of Sg; for L =
7.5 mm.

Table 2: Sequential sampling results.

Modeling accuracy Number
Target [dB] | Achieved [dB] | of points
-40 -47.98 9
-45 -47.98 9
-50 -50.80 14
-55 -55.88 22
-60 -60.07 42




equal to —60 dB. Some of the S-matrix entries at one of the vali-
dation point (gray asterisk in Fig. 6) are plotted for the scalable
macromodel and compared with the ADS momentum data in
Fig. 7, showing the achieved accuracy.
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Figure 6: Design space generated by the proposed sequential
sampling algorithm.
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Figure 7: Magnitude of some S-matrix entries at (S,L) =
(0.1125,8.125) mm.

Conclusions

We have presented a new sequential sampling algorithm for
efficient and accurate scalable macromodeling of parameterized
frequency responses of high-speed systems. The proposed se-
quential sampling algorithm was applied along with a scalable
macromodeling method on a pertinent numerical example. The
presented numerical results validate the proposed algorithm and
shows its high modeling and sampling capabilities.
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