-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by Ghent University Academic Bibliography

Three-stage two-parameter symplectic, symmetric
exponentially-fitted Runge-Kutta methods of Gauss type

M. Van Daele, D. Hollevoet and G. Vanden Berghe
Vakgroep Toegepaste Wiskunde en Informatica, Ghent WiiyeKrijgslaan 281-S9, B9000 Gent, Belgium

Abstract. We construct an exponentially-fitted variant of the well-known three sRagege-Kutta method of Gauss-type.
The new method is symmetric and symplectic by construction and it contampdvameters, which can be tuned to the
problem at hand. Some numerical experiments are given.
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INTRODUCTION

The study of methods for the numerical integration of ODEsctvimave periodic or oscillating solutions has lead to
the development of so-called trigonometrically-fitted émponentially-fitted) methods. The aim of this approaclois t
derive more accurate and/or efficient algorithms than timege purpose ones by using the available information on
the solutions. A detailed survey including an extensivdidgpaphy on the subject of exponential-fitting can be found
in [1].

On the other hand, oscillatory problems arise in differexitif of applied sciences, and in may cases they are Hamil-
tonian systems. It has been widely recognized by severabesithat symplectic integrators have some advantages for
the preservation of qualitative properties of the flow oherdtandard integrators when they are applied to Hamilonia
systems. For the class of oscillatory Hamiltonian systemagddition to using EF methods, it may be appropriate to
consider symplectic methods that preserve the structutieeodriginal flow. In addition, symmetric methods show a
better long time behaviour than non symmetric ones wheriexpfd reversible differential systems, as it is the case
for conservative mechanical systems. In general, it has pesved that for all differential systems for which the flow
is reversible, the numerical flow of a RK method will also beersible iff (for a reversing symmetry that is linear or
affine) it is symmetric [2]. An excellent overview of all thisn be found in [3].

In this paper, we focus our attention on symmetric, sympdeekponentially-fitted Runge-Kutta (EFRK) methods
of Gauss type, and in particular we will consider the cortdiom of a three stage method. Several authors have already
studied methods of this type : Van de Vyver [4] first constedcan EF two-stage method starting from a so-called
modified Runge-Kutta method, i.e. a method in which eachialestage contains an extra paramegterater, Vanden
Berghe and Van Daele [8, 9, 10] followed this approach to tansthree-stage and four-stage EF methods of this
type. The coefficients of their EF methods are selected attbbth the internal stages and the final stage integrate
exactly a set” of linearly independent functions. In [8, 9, 10] batfi,; and.%%i, take the form

) = {L 42 K U {exp(pt), texp(pt), ... tPexpxut)} . 1)

which is the same choice as in [1]. On the other hand, Calvb (8,8, 7] have considered three-stage methods with
fixed and variable nodes for whid: andSyi, take the form

F() = {142, KU {exp(E£put), exp(E2ut), ... ,expl£ (P+1) ut)} .

In this paper, following the approach used in [11], we coesitie construction of a member of a class of methods
that covers both cases, by starting from the general form

ﬁ,P(u@ Ha,..., IJP) = {17t7 t27 s 7tK} U {eXp(iUOt)a eXp(illlt), SRR eXp(iNPt)} ’

where the parameteyg, q=0, ..., P are either real or appear as complex conjugate pairs. @léfafly = 1/2 =
U2/3=...=pp/(P+1), this leads to the approach of Calvo and co-workers, whieafiproach of Vanden Berghe
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and co-workers is obtained whelg = u1 = ... = up. The case that is discussed here in detall is a three-stathedye
that contains two parameteng and 1.

THREE-STAGE TWO-PARAMETER METHODS

A symmetric, symplectic 3-stage Runge-Kutta method haame
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whereby symplecticity requires thiai a» + by a4 = 0. We consider the construction of a method for which

G = {1, exp(HoX),exp(—HoX)} and  Fiin = {1, exp(HoX),exp(— LX), exp(H1 X),exp(— 1 X) .
Therefore, we proceed in two steps. Firstly, we impose
Fint = {1, exp(HoX),exp(—LoX) } C Fin
which allows us to express all parametbyshy, a2, a3 in terms off. One then finds thdi; can be written as

sinh(a/2)  sinh(b/2)
a/2 b/2

cosha@) —coshb@) " @

b1 =G(20,22),  20:=Hoh,  G(ab):=

In fact the method that is obtained in this way is the one trest already reported by Calvo et al. in [5], formulas (26)
and (27), imposing

Fint = {1, exp(HoXx), exp(—HoX)}  and  Fiin = {1, exp(LioX),exp(—HoX), EXP(2 HoX),eXp(—2HoX) }

i.e. by accident the functions ekp2ppx) are integrated exactly by the final stage. Next we impose
{exp(u1X),exp(—H1X)} C F4in, and this leads tdy = G(zp, z1) with z; := pih. It is thus clear that we obtain
the relationG(z, 1) = G(z, 22p) from which 6 can be determined. In general, an iterative procedure idateto
determined, but some special cases allow an explicit computatiof. &for instance, if; = 37 the 3-stage method of
Calvo et al. [5] with variable knots is obtained and in thages# is given by formula (32) of [5], or by the equivalent
formulag = LarccosiiB) with

B = % (2 cosh(z/2) — 1+ \/4 cost (z0/2)+8 cosr(zo/2)+13> .

For small values ofz| and|z| (say smaller than 0.1), the use of a Taylor series (also frctmputation of the
coefficients of the RK method) is to be preferred. Tifecan be written as
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FIGURE 1. Plotof 8 as a function oZy andZ;.

Special care is also needed in case: 7y or z; =~ 2zy. In the particular case that = 7y, 'Hopital’s rule learns tha®
follows from /2
COSl"(ZO/Z) _ %
lim G - 012 G(z9,220).
2% (20,21) 2,6 sinh(z 0) (20.220)

Similarly, it is found that in case, = 27, 0 follows from

. cosh(zo) — <)
a3, O 1% 2) = o g S 22,6) 0 2%0)-
It should be noted that, for computational purposes, athfda can best be written down in terms of the functigns
andé of Ixaru [1], p. 64, which are defined §$Z) = cogiv/Z) andn () = sin(i vZ) /(i vZ) if Z # 0 andn (0) = 1.
This formalism allows to handle both the exponential (Z>®) she trigonometric case (Z<0) and the coefficients of
the methods can be expressed quite easily in this setting.
The behaviour 08 as a function 0%y := z5 andZ; := Z2 for —20< Zy, Z; < 20 is shown in Figure 1.

SOME NUMERICAL RESULTS

Finally, we present some numerical experiments to testehadiour of the new two-parameter EFRK method derived
in this paper. We compare our results with the classical &method and the 3 stage EF method of Calvo (both fixed
and variable nodes). All methods are symplectic, symmatritthe global preservation of symplecticness only holds
for a fixed step-size together with fixed fitting frequencilemg the integration.

The first problem we consider is the well-known Kepler probld], for which the Hamiltonian can be written as

1 1
H(p,a) == (pi+p3) — —.
2 \J G+ 33

The initial conditions are chosen such that at 0 : (qs, gz, p1, p2) = (1—e, 0,0, %g) wherebye = 0.001. To

integrate the problem numerically, we follow [4, 5, 9] and p= i (63 +3) ~%/2h, which is almost constant. For our
two-parameter scheme, we have put= 7/2.
The second problem we consider is a perturbed Kepler profe#j with

1 2e+¢€?
JE+@ 3@+

wherebye = 0.001 and initial conditions such that= 0 : (qi, 02, p1, P2) = (1,0,0,1+ €). For the numerical
integration, we have puh =ihandz = 7y/2.

We have integrated both problems [y 1007 with fixed stepsizeh=2"", m=1,...,3 and we computed the
maximum error over the integration interval. The resulessirown in Figure 2.

1
H(p.q) = 5 (PE+P3) -
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FIGURE 2. Maximum errors over the integration interval for the Kepler problem (kaft) the perturbed Kepler problem (right)
as a function of the number of steps.

Perturbed Kepler problem
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FIGURE 3. Maximum errors over the integration interval for the perturbed Kepleblem as a function of the number of steps
for various values of fac whem = facz,.

The efficiency and accuracy that can be obtained by EF metifortsurse strongly depend upon the choice of the
u-parameters. How their values should be chosen is still @m gpiestion. The value that was chosenzfowas the
same as the one that was chosen by the other cited authortheRwvo-parameter method, the choie= z5/2 was
made. In Figure 3 the results are shown for some other chofcas
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