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Abstract. We construct an exponentially-fitted variant of the well-known three stageRunge-Kutta method of Gauss-type.
The new method is symmetric and symplectic by construction and it contains two parameters, which can be tuned to the
problem at hand. Some numerical experiments are given.
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INTRODUCTION

The study of methods for the numerical integration of ODEs which have periodic or oscillating solutions has lead to
the development of so-called trigonometrically-fitted (orexponentially-fitted) methods. The aim of this approach is to
derive more accurate and/or efficient algorithms than the general purpose ones by using the available information on
the solutions. A detailed survey including an extensive bibliography on the subject of exponential-fitting can be found
in [1].

On the other hand, oscillatory problems arise in different fields of applied sciences, and in may cases they are Hamil-
tonian systems. It has been widely recognized by several authors that symplectic integrators have some advantages for
the preservation of qualitative properties of the flow over the standard integrators when they are applied to Hamiltonian
systems. For the class of oscillatory Hamiltonian systems,in addition to using EF methods, it may be appropriate to
consider symplectic methods that preserve the structure ofthe original flow. In addition, symmetric methods show a
better long time behaviour than non symmetric ones when applied to reversible differential systems, as it is the case
for conservative mechanical systems. In general, it has been proved that for all differential systems for which the flow
is reversible, the numerical flow of a RK method will also be reversible iff (for a reversing symmetry that is linear or
affine) it is symmetric [2]. An excellent overview of all thiscan be found in [3].

In this paper, we focus our attention on symmetric, symplectic, exponentially-fitted Runge-Kutta (EFRK) methods
of Gauss type, and in particular we will consider the construction of a three stage method. Several authors have already
studied methods of this type : Van de Vyver [4] first constructed an EF two-stage method starting from a so-called
modified Runge-Kutta method, i.e. a method in which each internal stage contains an extra parameterγi . Later, Vanden
Berghe and Van Daele [8, 9, 10] followed this approach to construct three-stage and four-stage EF methods of this
type. The coefficients of their EF methods are selected such that both the internal stages and the final stage integrate
exactly a setS of linearly independent functions. In [8, 9, 10] bothSint andS f in take the form

S
(1)
K,P(µ) = {1, t, t2, . . . , tK}∪{exp(±µ t), t exp(±µ t), . . . , tPexp(±µ t)} . (1)

which is the same choice as in [1]. On the other hand, Calvo et al. [5, 6, 7] have considered three-stage methods with
fixed and variable nodes for whichSint andSf in take the form

S
(2)
K,P(µ) = {1, t, t2, . . . , tK}∪{exp(±µ t), exp(±2µ t), . . . ,exp(±(P+1)µ t)} .

In this paper, following the approach used in [11], we consider the construction of a member of a class of methods
that covers both cases, by starting from the general form

ŜK,P(µ0,µ1, . . . , µP) = {1, t, t2, . . . , tK}∪{exp(±µ0 t), exp(±µ1 t), . . . , exp(±µP t)} ,

where the parametersµq, q = 0, . . . , P are either real or appear as complex conjugate pairs. Clearly, if µ0 = µ1/2 =
µ2/3 = . . . = µP/(P+1), this leads to the approach of Calvo and co-workers, while the approach of Vanden Berghe
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and co-workers is obtained whenµ0 = µ1 = . . . = µP. The case that is discussed here in detail is a three-stage method,
that contains two parametersµ0 andµ1.

THREE-STAGE TWO-PARAMETER METHODS

A symmetric, symplectic 3-stage Runge-Kutta method has theform
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whereby symplecticity requires thatb1 α2 +b2 α4 = 0. We consider the construction of a method for which

Sint = {1, exp(µ0x),exp(−µ0x)} and S f in = {1, exp(µ0x),exp(−µ0x), exp(µ1x),exp(−µ1x)} .

Therefore, we proceed in two steps. Firstly, we impose

Sint = {1, exp(µ0x),exp(−µ0x)} ⊂ S f in

which allows us to express all parametersb1, b2, α2, α3 in terms ofθ . One then finds thatb1 can be written as

b1 = G(z0, 2z0) , z0 := µ0h, G(a,b) :=

sinh(a/2)
a/2 − sinh(b/2)

b/2

cosh(aθ)−cosh(bθ)
. (2)

In fact the method that is obtained in this way is the one that was already reported by Calvo et al. in [5], formulas (26)
and (27), imposing

Sint = {1, exp(µ0x),exp(−µ0x)} and S f in = {1, exp(µ0x),exp(−µ0x), exp(2µ0x),exp(−2µ0x)} ,

i.e. by accident the functions exp(±2µ0x) are integrated exactly by the final stage. Next we impose
{exp(µ1x),exp(−µ1x)} ⊂ S f in, and this leads tob1 = G(z0, z1) with z1 := µ1h. It is thus clear that we obtain
the relationG(z0, z1) = G(z0, 2z0) from which θ can be determined. In general, an iterative procedure is needed to
determineθ , but some special cases allow an explicit computation ofθ . For instance, ifz1 = 3z0 the 3-stage method of
Calvo et al. [5] with variable knots is obtained and in that case,θ is given by formula (32) of [5], or by the equivalent
formulaθ = 1

z0
arccosh(β ) with

β =
1
6

(
2 cosh(z0/2)−1+

√
4 cosh2 (z0/2)+8 cosh(z0/2)+13

)
.

For small values of|z| and |z1| (say smaller than 0.1), the use of a Taylor series (also for the computation of the
coefficients of the RK method) is to be preferred. Thenθ can be written as

θ =
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FIGURE 1. Plot of θ as a function ofZ0 andZ1.

Special care is also needed in casez1 ≈ z0 or z1 ≈ 2z0. In the particular case thatz1 = z0, l’Hopital’s rule learns thatθ
follows from

lim
z1→z0

G(z0, z1) =
cosh(z0/2)− sinh(z0/2)

z0/2

z0 θ sinh(z0 θ)
= G(z0,2z0) .

Similarly, it is found that in casez1 = 2z0, θ follows from

lim
z1→2z0

G(2z0, z1) =
cosh(z0)− sinh(z0)

z0

2z0 θ sinh(2z0 θ)
= G(z0,2z0) .

It should be noted that, for computational purposes, all formula can best be written down in terms of the functionsη
andξ of Ixaru [1], p. 64, which are defined asξ (Z) = cos(i

√
Z) andη(Z) = sin(i

√
Z)/(i

√
Z) if Z 6= 0 andη(0) = 1.

This formalism allows to handle both the exponential (Z>0) and the trigonometric case (Z<0) and the coefficients of
the methods can be expressed quite easily in this setting.

The behaviour ofθ as a function ofZ0 := z2
0 andZ1 := z2

1 for −20≤ Z0, Z1 ≤ 20 is shown in Figure 1.

SOME NUMERICAL RESULTS

Finally, we present some numerical experiments to test the behaviour of the new two-parameter EFRK method derived
in this paper. We compare our results with the classical Gauss method and the 3 stage EF method of Calvo (both fixed
and variable nodes). All methods are symplectic, symmetricand the global preservation of symplecticness only holds
for a fixed step-size together with fixed fitting frequencies along the integration.

The first problem we consider is the well-known Kepler problem [4], for which the Hamiltonian can be written as

H(p,q) =
1
2

(
p2

1 + p2
2

)
− 1√

q2
1 +q2

2

.

The initial conditions are chosen such that att = 0 : (q1, q2, p1, p2) =
(

1−e, 0, 0,
√

1+e
1−e

)
wherebye= 0.001. To

integrate the problem numerically, we follow [4, 5, 9] and put z0 = i (q2
1 +q2

2)
−3/2h, which is almost constant. For our

two-parameter scheme, we have putz1 = z0/2.
The second problem we consider is a perturbed Kepler problem[5, 9] with

H(p,q) =
1
2

(
p2

1 + p2
2

)
− 1√

q2
1 +q2

2

− 2ε + ε2

3
√

(q2
1 +q2

2)
3

wherebyε = 0.001 and initial conditions such thatt = 0 : (q1, q2, p1, p2) = (1, 0, 0,1+ ε). For the numerical
integration, we have putz0 = i h andz1 = z0/2.

We have integrated both problems in[0, 1000] with fixed stepsizeh = 2−m, m = 1, . . . ,3 and we computed the
maximum error over the integration interval. The results are shown in Figure 2.
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FIGURE 2. Maximum errors over the integration interval for the Kepler problem (left)and the perturbed Kepler problem (right)
as a function of the number of steps.
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FIGURE 3. Maximum errors over the integration interval for the perturbed Kepler problem as a function of the number of steps
for various values of fac wherez1 = facz0.

The efficiency and accuracy that can be obtained by EF methodsof course strongly depend upon the choice of the
µ-parameters. How their values should be chosen is still an open question. The value that was chosen forz0 was the
same as the one that was chosen by the other cited authors. Forthe two-parameter method, the choicez1 = z0/2 was
made. In Figure 3 the results are shown for some other choicesof z1.

REFERENCES

1. L. Gr. Ixaru and G. Vanden Berghe,Exponential fitting, Kluwer Academic Publishers, Dordrecht, 2004.
2. R.I. McLachlan, G.R.W. Quispel and P.S.P. Tse,BIT 49177–197 (2009).
3. E. Hairer, C. Lubich and G. Wanner,Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary

Differential Equations, Springer, Berlin, 2002.
4. H. Van de Vyver,Comput. Phys. Comm.174, 255–262 (2006).
5. M. Calvo, J.M. Franco, J.I. Montijano and L. Rández,Journ. Comp. Appl. Math.223, 387–398 (2009).
6. M. Calvo, J.M. Franco, J.I. Montijano and L. Rández,Journ. Comp. Appl. Math.218, 421–434 (2008).
7. M. Calvo, J.M. Franco, J.I. Montijano and L. Rández,Comp. Phys. Commun.178, 732–744 (2008).
8. G. Vanden Berghe and M. Van Daele, ”Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the

Gauss-type : a review”, dedicated to Manuel Calvo for his 65th birthday (to be in Journal of the Academia de Ciencias de
Zaragoza).

9. G. Vanden Berghe and M. Van Daele, ”Symplectic exponentially-fitted modified Runge-Kutta Gauss methods”, Proceedings of
the 10th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE2010,
2010, 945–960.

10. G. Vanden Berghe and M. Van Daele, ”Symplectic exponentially-fittedfour-stage Runge-Kutta methods of the Gauss type”,
Numerical AlgorithmsDOI 10.1007/S11075-010-9407-8.

11. M. Van Daele, D. Hollevoet and G. Vanden Berghe, “MultiparameterExponentially-fitted Methods applied to second-order
boundary value problems” inNumerical Analysis and Applied Mathematics, edited by T.E. Simos et al., AIP Conference
Proceedings 1168, American Institute of Physics, New York, 2009, pp. 750–753


