
A fast external force field for parametric active contour
segmentation

Jonas De Vylder, Koen Douterloigne, and Wilfried Philips

Department of Telecommunications and Information Processing,
IBBT - Image Processing and Interpretation Group,

Ghent University, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
jonas.devylder@telin.ugent.be
http://telin.ugent.be/ipi/

Abstract. Active contours or snakes are widely used for segmentation and track-
ing. We propose a new active contour model, which converges reliably even when
the initialization is far from the object of interest. The proposed segmentation
technique uses an external energy function where the energy slowly decreases in
the vicinity of an edge. Based on this energy a new external force field is de-
fined. Both energy function and force field are calculated using an efficient dual
scan line algorithm. The proposed force field is tested on computational speed,
its effect on the convergence speed of the active contour and the segmentation
result. The proposed method gets similar segmentation results as the gradient
vector flow and vector field convolution active contours, but the force field needs
significantly less time to calculate.
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1 Introduction

The reliable estimation of object features in images is a time consuming task. In many
application areas the analysis requires human intervention. This is e.g. the case in cell
analysis, where a microscopist first has to identify cells of interest, then delineate them
in order to measure the cell growth. Although interactive software tools can ease this
work, the approach becomes impractical in monitoring when huge amounts of images
need to be processed. In order to decrease the time used by human operators, the aid of
automatic or semi-automatic image analysis algorithms is desired.

The active contour framework is widely used for automatic and supervised segmen-
tation. This method translates and deforms an initial contour in order to minimize an
energy function, which results in a contour delineating the object of interest. Depending
on the application, different energy functions have been proposed. The adjustability of
the energy function has resulted in numerous energy functions which can incorporate
prior knowledge of motion [1–3], region statistics [4, 5], expected shapes [1, 6, 7], etc.

Two main classes of active contours are found in literature: the first class represents
the contour explicitly as a parametric curve; the second class represents the contour
implicitly using level sets. In this paper we will define a new external force field which
can be calculated in a fast and efficient way, which results in good segmentation and
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which has straightforward parameters. The proposed force is defined to be used with
parametric active contours. In [8, 9] the use of similar external forces and energies are
used for geometric active contours, which suggest that the proposed technique can be
adjusted to work with geometric active contours as well. However, in the scope of this
paper we will limit ourselves to parametric active contours.

This paper is arranged as follows. The next section provides a detailed description
of active contours. In section 3 our proposed algorithm is presented. Section 4 shows
the results of our technique and is compared to the results from other active contour
formulations. Section 5 recapitulates and concludes.

2 Active Contours

2.1 Parametric Active Contours

The original parametric active contour model proposed by Kass et al. [4], defines the
active contour as a parametric curve, r(s) = (x(s), y(s)), which moves in the spatial
domain until the energy functional in Eq. (1) reaches its minimum value.

Esnake[r(.)] = Eint[r(.)] + Eext[r(.)] (1)

Eint[r(.)] and Eext[r(.)] represent respectively the internal and external energy of the
contour. The internal energy enforces smoothness along the contour. A common internal
energy function is defined as follows:

Eint[r(.)] =
1

2

∫ (
α
∣∣∣dr(s)
ds

∣∣∣2 + β
∣∣∣d2r(s)
ds2

∣∣∣2)ds. (2)

where α and β are weighting parameters. The first term, also known as the tension
energy, prevents the contour from sticking to isolated points by penalizing stretching of
the contour. The second term, known as the bending energy, measures the smoothness,
e.g. by penalizing sharp corners. More complex energy terms, for example based on
Fourier descriptors, have also been reported in literature [6, 10, 7].

The external energy is derived from the image, such that the contour will be attracted
to features of interest. Given a gray level image I(x, y), a common external energy is
defined as:

Eext[r(.)] = −
∫
F (r(s))ds. (3)

where F (x, y) is a feature map. Common features of interest are edges, e.g.

F (x, y) =| ∇I(x, y) |2 (4a)

or
F (x, y) =

∣∣∣∇(Gσ(x, y) ∗ I(x, y))∣∣∣2 (4b)

where ∇ is the gradient operator, Gσ(x, y) a 2D Gaussian kernel with standard devia-
tion σ and where ∗ is the convolution operator.
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Eq. (1) can be minimized by treating r(s) as a function of time, i.e. r(s, t). This
requires finding x(s, t) and y(s, t) such that

∂x(s, t)

∂t
= α

∂2x(s, t)

∂s2
− β ∂

4x(s, t)

∂s4
+
∂F
(
r(s, t)

)
∂x

(5a)

and
∂y(s, t)

∂t
= α

∂2y(s, t)

∂s2
− β ∂

4y(s, t)

∂s4
+
∂F
(
r(s, t)

)
∂y

(5b)

vanish for all s. This can be achieved by iteratively solving a discretization of s using a
finite difference approach [11, 12].

2.2 Force Based Active Contours

The external energy term defined in the previous section usually requires a good ini-
tialization, close to the object boundary, in order to achieve correct convergence. This
limitation is caused by the nature of the external energy term, which is typically non-flat
only in the proximity of the object’s boundary. To overcome this problem, Xu and Prince
[13] proposed the use of an external force field, v(x, y) = (P (x, y), Q(x, y)), where
P (r(s, t)) and Q(r(s, t)) replace the partial derivatives of F (r(s, t)) in Eq. (5),i.e.

∂r(s, t)

∂t
= α

∂2r(s, t)

∂s2
− β ∂

4r(s, t)

∂s4
+ v(r(s, t)) (6)

The vector field v(., .) is calculated by minimizing the following energy functional:

EGV F [v(., .)] =∫∫
µ
(∂P (x, y)

∂x

2

+
∂P (x, y)

∂y

2

+
∂Q(x, y)

∂x

2

+
∂Q(x, y)

∂y

2)
+ | ∇F (x, y) |2| v(x, y)−∇F (x, y) |2 dxdy (7)

where µ is a nonnegative parameter expressing the degree of smoothness imposed on
the field v and where F is a feature map such as in Eq. (4). The first term of Eq. (7) keeps
the field v smooth, whereas the second term forces the field v to resemble the original
edge force in the neighbourhood of edges. This external force is called Gradient Vector
Flow (GVF) field. The force field with minimal energy can be found using gradient
descent [13].

A different approach is proposed by Li et al. [14] and by Wang et al. [15], who
define an external force by using Vector Field Convolution (VFC), i.e.

v(x, y) =
(
K ∗ ∂F (x, y)

∂x
,K ∗ ∂F (x, y)

∂y

)
(8)

where K can be any kernel function.
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3 Force propagation

The GVF force field extends the capturing range of the active contours by iteratively
updating the external force field. Although this force field has been proven useful, it
comes at a great cost: iteratively updating of the force field in order to minimize an
energy function is both memory and time consuming. The VFC force field does not
suffer from this problem, but it is difficult to find an optimal kernel function for a spe-
cific application. In the following section we propose a new external energy based on
edge and force propagation (ep and fp respectively), which does not need the iterative
optimization of a force field, but which has straightforward parameters.

We start from a force field vfp(x, y) which is zero everywhere and a feature map
Fep(x, y), such as in Eq. (4) where the feature map expresses how much evidence there
is that there is an edge at pixel (x, y). The goal is to create a new feature map, where
there is high edge evidence at the edge itself and where the edge evidence gradually
decreases if you get further away from the edge. The main idea is to propagate strong
edge evidence at a certain pixel to its neighbouring pixels with lower edge evidence.
This step only propagates edge evidence to the direct neighbours, which would require
an iterative process as well. This can however be avoided by the following dual scan
line algorithm:

1. Scan the edge map row by row from top to bottom
2. In each row, the pixels are scanned from left to right
3. Define the already processed neighbourhood of a pixel (x,y), i.e.

n(x, y, i) =


(x, y − 1) if i = 1

(x− 1, y − 1) if i = 2

(x− 1, y) if i = 3

(x− 1, y + 1) if i = 4

(9)

In Fig. 1(a) the already processed neighbour pixels for P are shown in pink.
4. Update the pixel in the feature map by:

Fep(x, y) = max

{
γmaxi Fep

(
n(x, y, i)

)
(a)

Fep(x, y) (b)
(10)

where γ ∈ [0, 1] is a weighting coefficient, which determines the speed at which
edge evidence decreases. This propagates edge evidence of a pixel beyond its direct
neighbours in the scanning direction. Note that all pixels of Fep(n(x, y, .)) are
already processed in previous steps, due to the scanning order.

5. The feature map resulting from this scanning algorithm defines a new external en-
ergy. Instead of using the gradient of this external energy we propose to propagate
the force corresponding to the external energy, i.e.

vfp(x, y) =

max

{
vfp(n(x, y, i)) + n(x, y, i)− (x, y) if (a) was used in eq. (10)
vfp(x, y) if (b) was used in eq. (10)

(11)
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where i = argmaxFep
(
n(x, y, i)

)
. In Fig. 1 an example is shown. Assume that

the feature map is maximal in its top neighbour, i.e. i = 3. The force vector is
equal to the sum the force vector in n(x, y, 3), shown as a dashed blue arrow, and
the vector pointing from the current pixel to n(x, y, 3), shown as the small blue
arrow. This results in a vector pointing from the current pixel to the same point as
to which the vector in n(x, y, 3) points, shown as a black arrow.

2 3 4

1 P 1

4 3 2

(a) (b)

Fig. 1. Example of edge and force propagation. In (a) the feature map is show, together with the
two processed neighbourhoods. The red one is used in the first run, the green neighbourhood is
used for the second run. (b) The force at the pixel is the sum of the force of its neighbouring pixel
and the vector to that pixel.

This algorithm propagates edge evidence from top to bottom and from left to right of
the image. Repeat the algorithm in order to propagate edge evidence in the remaining
directions, but in opposite scanning direction, i.e. from bottom to top and from right to
left. Then the already processed neighbourhood of a pixel (x,y) is:

n′(x, y, i) =


(x, y + 1) if i = 1

(x+ 1, y + 1) if i = 2

(x+ 1, y) if i = 3

(x+ 1, y − 1) if i = 4

(12)

Fig. 1(a) this new neighbourhood is shown in dark green. After the second run, the
vector field should be adjusted in order to have a proper norm. There are two common
approaches:

– Set the norm of a force vector equal to its value in the feature map, i.e.

vfp(x, y) = Fep(x, y)
vfp(x, y)

‖vfp(x, y)‖
(13)

This results in a vector field where there is a strong force in the vicinity of edges
and a weak force far away of edges, i.e. far away of edges the active contour is
mainly regulated by the internal energy, whereas in the vicinity of edges it is mainly
deformed by the external force.
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– Normalize the force, i.e.

vfp(x, y) =
vfp(x, y)

‖vfp(x, y)‖
(14)

This results in an active contour which evolves at nearly constant speed, such as
proposed in [12].

Force propagation active contours can be optimized by replacing the external force in
Eq.(6) by vfp(r(s, t)). In Fig. 3 an example is shown. In (a) the feature map of an
image with an isolated point in the centre of the image is shown. In (b) the gradient of
the feature map is shown, whereas in (c) the proposed force field can be seen. Note that
a free particle placed in both force fields will move to the same point, i.e. the maximum
of the feature map. The particle moving according to the proposed force field will move
the shortest distance possible to arrive at the steady state, which is clearly not the case
for the particle moving according to the gradient of the feature map.

(a) (b) (c)

Fig. 2. (a) An example of the feature map of an isolated point in the centre of the image. (b) The
force field defined by the gradient of the feature map. (c) The force field resulting from force
propagation.

4 Results

4.1 Error Metric

For the validation of the segmentation, the Dice coefficient is used. If S is the resulting
segment from the active contour, i.e. the region enclosed by r(s), and GT the ground
truth segment, then the Dice coefficient between S and GT is defined as:

d(S,GT ) =
2 Area(S ∧GT )

Area(S) + Area(GT )
(15)

where S ∧ GT consist of all pixels which both belong to the detected segment as well
as to the ground truth segment. If S and GT are equal, the Dice coefficient is equal to
one. The Dice coefficient will approach zero if the regions hardly overlap.
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4.2 Convergence

To test the convergence of the active contours using the proposed external energy, a
database with pictures of leaves was used. This tests how the proposed technique con-
verges to realistic shapes with concavitys. The database contains 355 pictures of isolated
leaves from five different plant species. These are colour pictures of 512 × 512 pixels.
The leaves were extracted by thresholding the RGB values. An example of such a leaf
is shown in the left part of Fig. 3. The active contour was initialised by a square delin-
eating the full image. Then the Dice coefficient between the active contour and the leaf
was measured every 10 iterations. The average results can be seen in Fig. 4.a. The pro-
posed active contours (FP) are compared with the GVF and VFC active contours [13,
14]. The VFC force field was calculated using a kernel based on a quadratic function
as defined in [14], the gvf force fields was calculated with µ = 0.2. As can be seen,
the proposed method converges approximately to the same result as the GVF active
contours, but converges significantly faster: it reaches a Dice coefficient of 0.88 in 40
iterations, compared to GVF which needs approximately 48 iterations to achieve the
same Dice coefficient. The VFC active contours converge slower than the force propa-
gation active contours and never reach the same accurate result as GVF or the proposed
method.

Fig. 3. Examples of images used to test the active contours: left a binary image of the leaf
database, right an example of an isolated cell in a fluorescent micrograph.

In a second experiment, the proposed technique is tested on real data. The goal is
to segment isolated cells in fluorescent micrographs. On the right of Fig. 3 an example
of such a micrograph is shown. Twenty cells were manually segmented and compared
with the resulting segments from both the proposed and the GVF active contours. For
both methods tests were done with several parameter combinations, i.e. µ in Eq. (7) and
γ in Eq. (10). For GVF, µ = 0.22 resulted in the best average dice coefficient, γ = 0.97
gave the best result for the proposed method. The resulting Dice coefficients for GVF
with µ = 0.22, and the result for our method with γ = 0.97 are compared in the bottom
part of Fig. 4. Both methods perform well with almost all Dice coefficients between 0.8
and 1, except for cell 18, where the GVF active contour converged to a false optimum
due to clutter in the micrograph.

4.3 Computational Cost

The proposed scanning algorithm recalculates the value of each pixel twice, resulting
in a O(N2) algorithm for a square image with dimension N × N . The VFC force
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Fig. 4. Top, convergence of different active contours. Bottom, the resulting Dice coefficients of
GVF and force propagation active contours.

computation has a complexity ofO(N2 logN2) which is determined by the complexity
of the 2D FFT and IFFT algorithms used. Since the GVF field needs O(N2) operations
for each iteration and N iterations are generally needed to calculate the force field [14],
the GVF field has an O(N3) complexity. In Fig. 5 the computation time of GVF, VFC
and the proposed force field are compared in function of the image size. Note that the
time axis is log scaled. These experimental results were calculated on a computer with
an Intel core I7 1.60 GHz CPU and 4 GB RAM. All algorithms were programmed
in C. The GVF code was provided by Xu and Prince [13]. The code for VFC was
provided by the Virginia Image & Video Analysis group [14]. In agreement with the
theoretical complexity analysis, the GVF field is the slowest to calculate. The VFC
field is much faster than GVF, but is significantly slower than the proposed method,
while the proposed method outperforms VFC on segmentation quality as well.
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Fig. 5. Computational cost of GVF, VFC and force propagation for a NxN image.

5 Conclusion

In this paper a new variant on the active contour framework is defined. This method
propagates both edge evidence and the corresponding force vector in order to extend
the capturing range of active contours. Experiments show that the proposed method is
much faster than GVF and VFC, while resulting in similar segmentation results as GVF.
It produces better segmentation results than VFC. The method has been tested both on
binary and real fluorescent micrographs and shows good convergence properties. The
proposed method only has one parameter which allows easy tuning.
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