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Abstract— We analyze by means of Granger causality the
effect of synergy and redundancy in the inference (from time
series data) of the information flow between subsystems of a
complex network. Whilst fully conditioned Granger causality
is not affected by synergy, the pairwise analysis fails to put
in evidence synergetic effects. We show that maximization
of the total Granger causality to a given target, over all
the possible partitions of the set of driving variables, puts
in evidence redundant multiplets of variables influencing the
target, provided that an unnormalized definition of Granger
causality is adopted. Along the same lines we also introduce
a pairwise index of synergy (w.r.t. to information flow to a
third variable) which is zero when two independent sources
additively influence a common target; thus, this definion differs
from previous definitions of synergy.

I. INTRODUCTION

The inference of dynamical networks from time series data
is related to the estimation of the information flow between
variables [1]. Granger causality (GC) [2] has emerged as a
major tool to address this issue. GC is based on prediction:
if the prediction error of the first time series is reduced by
including measurements from the second one in the linear
regression model, then the second time series is said to have
a Granger causal influence on the first one.

The pairwise Granger analysis consists in assessing GC
between each pair of variables, independently of the rest
of the system. It is well known that the pairwise analysis
cannot disambiguate direct and indirect interactions among
variables. The most straightforward extension, the condi-
tioning approach, removes indirect influences by evaluating
to which extent the predictive power of the driver on the
target decreases when the conditioning variable is removed.
As a convenient alternative to this suboptimal solution,
a partially conditioned approach has been proposed [3],
consisting in conditioning on a small number of variables
chosen as the most informative ones for the driver node.
Sometimes though, a fully conditioned approach can also
encounter conceptual limitations (in addition to be practically
unfeasible and computationally expensive): in the presence of
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redundant variables the application of the standard analysis
leads to underestimating the influences [4]. Redundancy and
synergy are intuitive yet elusive concepts, which have been
investigated in different fields, including pure information
theory [5], [6], [7], [8], [9], [10]. A complementary concept
to redundancy is synergy. The synergetic effects that we
address here, related to the analysis of dynamical influences
in multivariate time series, are similar to those encountered in
sociological and psychological modeling, where suppressor
is the name given to variables that increase the predictive
validity of another variable after its inclusion into a linear
regression equation [11]. For further details, see also [12],
[7], where information-based approaches were applied to
address collective influences.

II. GRANGER CAUSALITY

Granger causality is a powerful and widespread data-
driven approach to determine whether and how two time
series exert direct dynamical influences on each other [13].
A convenient nonlinear generalization of GC has been imple-
mented in [14] by exploiting the kernel trick, which makes
computation of dot products in high-dimensional feature
spaces possible using simple functions (kernels) defined on
pairs of input patterns. This trick allows the formulation of
nonlinear variants of any algorithm that can be cast in terms
of dot products, for example Support Vector Machines [15].
Thus, although the aim in [14] is still to perform linear GC,
it does it within a space defined by the nonlinear features
of the data. This projection is conveniently and implicitly
performed through kernel functions [16] in addition to use a
statistical procedure to avoid over-fitting.

Quantitatively, let us consider n time series
{xα(t)}α=1,...,n; the lagged state vectors are denoted

Xα(t) = (xα(t−m), . . . ,xα(t−1)) ,

where m is the order of the model (window length). Let
ε (xα |X) be the mean squared error prediction of xα on the
basis of all the vectors X = {Xβ}n

β=1 (corresponding to the
kernel approach described in [17]). The fully conditioned
GC index δFCGC(β → α) is defined as follows: consider the
prediction of xα on the basis of all the variables except Xβ
and similarly the prediction of xα using all the variables,
then FCGC is the logarithm variation of the error for the
two conditions, i.e.

δFCGC(β → α) = log
ε
(
xα |X\Xβ

)

ε (xα |X)
. (1)

It was shown in [18] that not all the kernels are suitable to
estimate GC. Indeed, two important classes of kernels used
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to construct nonlinear GC measures are the inhomogeneous
polynomial kernel (whose features are all the monomials in
the input variables up to the p-th degree; p = 1 corresponds
to linear Granger causality) and the Gaussian kernel.

The pairwise Granger causality is given by:

δPWGC(β → α) = log
ε (xα |Xα)

ε
(
xα |Xα ,Xβ

) . (2)

III. UNNORMALIZED GRANGER CAUSALITY

Interaction information is a classical measure of the
amount of information (redundancy or synergy) bound up
in a set of three variables [19], [20]. A generalization of
the interaction information to the case of lagged interactions
was addressed in [21]. It is important to emphasize that the
sign of the interaction information corresponds to synergy or
redundancy, and that this interpretation implies that synergy
and redundancy are taken to be mutually exclusive qualities
of the interactions between variables [22]. Other approaches,
instead, consider that synergy and redundancy are separated
entities; for example, the partial information decomposition
(PID) approach in [23] showed that the information that
two source variables Y and Z hold about a third target
variable X can be decomposed into four parts: (i) the unique
information that only Y (out of Y and Z) holds about X;
(ii) the unique information that only Z holds about X; (iii)
the redundant information that both Y and Z hold about
X; and (iv) the synergetic information about X that only
arises from knowing both Y and Z. For Gaussian variables,
where these four contributions were calculated analytically
[24], it was shown some undesirable results, e.g., redundancy
reduces to the minimum information provided by either
source variable, and hence it is independent on the correlation
between sources. As suggested in [24], this occurrence may
be related to the fact that to evaluate the Shannon information
for continuous random variables is more convenient to do
it by using the differential entropy, as the limit to the
continuum is not straightforward [25]. This is why here,
for the case of continuous variables, we propose to describe
the informational character of a subset of variables in terms
of the reduction of residuals variance of the target due to
inclusion of driver variables, similar to the strategy followed
in [4]. The informational character of each multiplet will be
associated to a single number, which may be seen as the
difference of redundancy and synergy in every formalism
where these two notions are separately defined (see the
discussion in [22]).

First of all, we note that the straightforward generalization
of Granger causality for driving sets of variables is

δX(B→ α) = log
ε (xα |Xα ,X\B)

ε (xα |Xα ,X)
, (3)

where B are is a subset of variables, xα is the target variable
and X \ B means the set of all variables except for those
Xβ with β ∈ B. Note that we have isolated the variable Xα ,
i.e. the present state of the target. The subscript X has been
included to put in evidence the conditioning variables used
to evaluate GC.

On the other hand, an unnormalized version of it is given
by

δ u
X(B→ α) = ε (xα |Xα ,X\B)− ε (xα |Xα ,X) . (4)

It can be easily shown that it satisfies the following inter-
esting property: if {Xβ}β∈B are statistically independent and
their contributions in the model for xα are additive, then

δ u
X(B→ α) = ∑

β∈B

δ u
X(β → α). (5)

We remark that this property does not hold for the standard
definition of Granger causality; neither for entropy-rooted
quantities [22], due to the presence of the logarithm.

In order to identify the informational character of a set of
variables B, concerning the causal relationship B → α , we
remind that, in general, synergy occurs if B contributes to α
with more information than the sum of all its variables, whilst
redundancy corresponds to situations with the same informa-
tion being shared by the variables in B [20]. We can render
quantitatively these notions and define the variables in B to be
redundant if δ u

X(B→ α) > ∑β∈B δ u
X(β → α), and synergetic

if δ u
X(B → α) < ∑β∈B δ u

X(β → α). In order to justify these
definitions, firstly we observe that the case of independent
variables (and additive contributions) does not fall in the
redundancy case nor in the synergetic case, due to (5), as
it should be. Moreover, we describe the following example
for two variables X1 and X2. If X1 and X2 are redundant,
then removing X1 from the input variables of the regression
model does not have a great effect, as X2 provides the same
information as X1; this implies that δ u

X(X1 → α) is nearly
zero. The same reasoning holds for X2, hence we expect that
δ u

X({X1,X2}→α) > δ u
X(X1 →α)+δ u

X(X2 →α). Conversely,
let us suppose that X1 and X2 are synergetic, i.e. they provide
some information about α only when both the variables are
used in the regression model; in this case δ u

X({X1,X2}→ α),
δ u

X(X1 → α) and δ u
X(X2 → α) are almost equal and therefore

δ u
X({X1,X2}→ α) < δ u

X(X1 → α)+δ u
X(X2 → α).

Two analytically tractable cases are now reported as ex-
amples. Consider two stationary and Gaussian time series
x(t) and y(t) with 〈x2(t)〉 = 〈y2(t)〉 = 1 and 〈x(t)y(t)〉 =
C ; they correspond, e.g., to the asymptotic regime of the
autoregressive system

xt+1 = axt +byt +σξ (1)
t+1

yt+1 = bxt +ayt +σξ (2)
t+1,

(6)

where ξ are i.i.d. unit variance Gaussian variables, C =
2ab/(1− a2 − b2) and σ2 = 1− a2 − b2 − 2abC . Consid-
ering the time series zt+1 = A(xt + yt) + σ ′ξ (3)

t+1 with σ ′ =√
1−2A2(1+C ), we obtain for m = 1:

δ u
X({x,y}→ z)−δ u

X(x→ z)−δ u
X(y→ z) = A2(C +C 2). (7)

Hence x and y are redundant (synergetic) for z if C is positive
(negative). Turning to consider wt+1 = B xt ·yt +σ ′′ξ (4)

t+1 with
σ ′′ =

√
1−B2(1+2C )2, and using the polynomial kernel

with p = 2, we have

δ u
X({x,y}→ z)−δ u

X(x→ z)−δ u
X(y→ z) = B2(4C 2−1); (8)
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x and y are synergetic (redundant) for w if |C |< 0.5 (|C |>
0.5).

The presence of redundant variables leads to under-
estimation of their Granger causality when the standard
multivariate approach is applied (as it is clear from the
discussion above, this is not the case for synergetic vari-
ables). Redundant variables should then be grouped to get
a reliable measure of Granger causality, and to characterize
interactions in a more compact way. As it is clear from the
discussion above, grouping redundant variables is connected
to maximization of the un-normalized Granger causality
index (4) and, in the general setting, can be made as follows.
For a given target α , we call B the set of the remaining
n− 1 variables. The partition {A`} of B, maximizing the
total Granger causality

∆ = ∑̀δ u
X(A` → xα),

consists of groups of redundant variables.

A. PAIRWISE SYNERGY INDEX

The discussion in the previous section suggests to describe
quantitatively the informational character of two variables
i and j, providing information for the future state of the
variable xα , by the following pairwise synergy index (PSI):

Ψα(i, j) = δ u
X\j(i→ α)−δ u

X(i→ α)
= δ u

X({i, j}→ α)−δ u
X(i→ α)−δ u

X( j → α),

where X is the set of conditioning variables. Ψ is negative for
increased unnormalized causality i→ α due to the inclusion
of j in the conditioning variables (positive PSI corresponds to
redundancy). Note that if i and j are statistically independent
and they cause α additively then PSI is zero, differently
from interaction information, where a common effect of two
causes induces a dependency among the causes that did not
formerly exist [26].

Another interpretation of Ψ is given by the cumulant
expansion of the prediction error of xα :

ε (xα |Xα)− ε (xα |{Xα ,X}) = ∑
B⊂X

S(B). (9)

Equation (9) can be solved by a Moebius inversion, which
yields

S(B) = ∑
Γ⊂B

(−1)|nB|+|nΓ| δ u
B(Γ→ α), (10)

where |nB| and |nΓ| are the number of variables in the subsets
B and Γ. The first order cumulant is then

S(i) = δ u
i (i→ α), (11)

the second cumulant is

S(i, j) = δ u
i j ({i j}→ α)−δ u

i j (i→ α)−δ u
i j ( j → α) , (12)

the third cumulant is

S(i, j,k) = δ u
i jk ({i jk}→ α)−δ u

i jk ({i j}→ α)
−δ u

i jk ({ jk}→ α)−δ u
i jk ({ik}→ α)

+δ u
i jk (i→ α)+δ u

i jk ( j → α)+δ u
i jk (k → α) , (13)

and so on. The index PSI may then be seen as the order
two cumulant of the expansion of the prediction error of the
target variable; equation (10) allows also the generalization
to higher order terms. Obviously PSI also depends also on
the choice of the kernel, i.e. on the choice of the regression
model.

IV. CONCLUSIONS

In this paper we have considered the inference, from time
series data, of the information flow between subsystems of a
complex network, an important problem in medicine and bi-
ology. In particular we have analyzed the effects that synergy
and redundancy induce on the Granger causal analysis of
time series; it is well known that the presence of redundancy
and synergy degrades the performance of GC methods. Here
we have introduced a frame for data analysis based on
unnormalized Granger causality, i.e. the reduction of variance
of the residuals of each target variables when candidate driver
variables are included in the regression model. Maximizing
the total unnormalized Granger causality leads to group
redundant variables. Finally, we have introduced a pairwise
index of synergy, which for each pair of variables measures
how much they interact to provide better predictions of the
target. Such index can be seen as the second cumulant in
the expansion of the prediction error of the target variable,
to be compared with the expansion of the transfer entropy
in [21] which provides the interaction information as the
second cumulant. The advantages provided by the present
cumulant expansion are (i) conceptual problems found in
the Gaussian case [24] are avoided, and (ii) the nonlinearity
of PSI can be easily controlled by varying the kernel in the
regression model. We have thus introduced a novel frame to
study interdependencies among subcomponents of complex
systems from data. A pitfall of unnormalized GC is the
occurrence that the connection with information theory is
lost, but the aim of the present approach is to identify
redundant and synergetic circuits rather than quantifying the
information flow in the system.
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