
Remote Management of a Large Set of
Heterogeneous Devices using Existing IoT

Interoperability Platforms

Heleen Vandaele, Jelle Nelis, Tim Verbelen, and Chris Develder

Ghent University – iMinds,
Department of Information Technology

Gaston Crommenlaan 8/201
9050 Gent, Belgium

firstname.name@ugent.be

Abstract. With the evolution of the Internet of Things, devices of many
different technologies and manufacturers are being developed (e.g. for use
cases ranging from home automation to smart cities). This creates chal-
lenges regarding interoperability between these heterogeneous devices,
as well as integrating them to enable innovative applications. Currently,
several integration platforms already exist to integrate technologies in a
local gateway (e.g. OpenHAB, Zodianet, etc.). Yet, the local set-up and
configuration still is overly complex, especially for non-technical users.
In this paper, we present a remote management platform that focuses
on ease of configuration and installation. It allows monitoring, configu-
ration, diagnostics and service provisioning without manual intervention
of a technical person. The platform reacts on local changes such as the
installation of a new device or state changes of discovered services. This
information can then be used to install required plugins, generate alarms
or take problem-solving actions.

Key words: Internet of Things, Integration, Remote Management,
DYAMAND, interoperability

1 Introduction

Today, many devices in our environment are connected, and communicate with
other entities to deliver a service to the user. The amount of connected devices
will continue to grow over the next years [17]. At the same time the amount of
technologies and standards interconnecting these devices is growing. Due to this
rapid growth, the landscape of technologies is very scattered, making it difficult
for end users and application developers to decide which technology to use or
support. Also for non-technical users it becomes more difficult to choose one
or more products, without getting locked in by a vendor. If the market does
not converge to one single standard, which is unlikely to happen in the near
future [7], interoperability platforms are required to overcome this problem.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55822959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Heleen Vandaele et al.

While some technologies, like Qeo [19], LooCI[6], AllJoyn [1] or CoAP [18]
push new standards for constrained device communication, attempting to be-
come the de facto standard in the future, other efforts are concentrating on inte-
grating the huge amount of different technologies. These efforts result mostly in
a gateway-centric approach, where an interoperability platform is located at the
edge of the local network, providing the necessary abstraction for applications
to communicate with devices, regardless of their technology.

Fig. 1. Gateway Centric Integration

The most used technology for implementing these gateway integration plat-
forms is the Open Service Gateway Initiative (OSGi) because of its platform and
application independence, service collaboration, security, support for multiple
network technologies and its simplicity [11]. OSGi is chosen by [4, 2, 20, 21, 8, 10]
and many others to be the basis of their gateway implementation. There are
alternative efforts as well, including HomeGate [20], Multimedia Home Plat-
form (MHP) [4, 21, 10] or the Home Gateway Initiative [4]. However, many
of these platforms are an installation and configuration nightmare. These plat-
forms also tend to become very bloated in terms of storage and memory usage
as they often try to support every technology out-of-the-box. Furthermore, a lot
of manual configuration is required, and to manage all these platforms physical
access to the device is needed. Especially in situations where multiple platforms
are distributed across multiple locations, for example in home care or building
management, the need for interventions needs to be kept to a minimum.

In this paper, we present a scalable architecture for a remote management
platform that monitors and configures IoT gateways. This includes monitoring
of information about the devices and services discovered by the gateway, data
about their state and actuation of devices locally managed by the gateway as
well as management of the local gateway itself. On the gateway, we also provide a
technology discovery component, which enables to only install technology plugins
that are present, resulting in a more lightweight gateway.



Remote Device Management of a Large Set of Heterogeneous Devices 3

In the remainder of this paper, the existing solutions for local integration
are discussed in Section 2. Based on the installation and configuration issues,
the requirements for a remote management system are identified in Section 3.
Based on these requirements, an architecture is proposed in Section 4. A proof-
of-concept implementation is described in Section 5, and its scalability evaluated
in Section 6. Section 7 concludes this paper with some pointers for future work.

2 Existing Integration Platforms

Today, quite a few integration platforms are available, both open source and
commercial. To evaluate the state of the art, we have chosen five platforms for
comparison, based on their availability to be used (free of charge), their support-
ing communication technologies and their underlying software platform. First,
openHAB [15] is an OSGi based platform hosted by the Eclipse Foundation.
Second we compared HomeOS [3], a Microsoft project to provide centralized
control of devices in the home. A third platform is the ZiBase gateway for home
control, manufactured by Zodianet [22]. Next we have OpenRemote [16], a soft-
ware integration platform for residential and commercial building automation
from OpenRemote Inc. Finally, DYAMAND [14] is a lightweight plugin based
interoperability framework developed at Ghent University - iMinds.

Table 1. Existing Integration Platforms: Conclusion

Platform Platform
installation

Add new
technology

Detect new
device

Install app

openHAB Command
Line

Config Files
+ OSGi bun-
dles

Config Files Config Files

Open Remote Command
Line

Manual con-
fig in GUI

Manual in
GUI

Manual con-
fig in GUI

Zodianet App Store,
Sync with
web server

Automated Config
via GUI,
Partially
automated

App Store

HomeOS Build from
source

Manual con-
fig in GUI

Our device
not detected

App Store

DYAMAND Start Script Automatic,
At Runtime

Automatic
Detection

Developer
API

We evaluated the procedure to integrate a new technology they all claim to
support (i.e. EnOcean), by checking the steps required to plug in an EnOcean
USB receiver to the gateway and connect a new EnOcean device. Table 1 gives
the summarized results of this platform comparison. The most important con-
clusion is that most platforms require manual configuration, either using config-
uration files, or using a graphical user interface. Only DYAMAND and Zodianet



4 Heleen Vandaele et al.

automatically detect the EnOcean USB and DYAMAND is the only one to
identify the EnOcean device automatically without any manual configuration.
As DYAMAND is an academic project, it only has a developer API for support-
ing 3rd party applications, while the commercial products offer an App store to
install new applications on the gateway.

3 Requirements

Based on the results of the comparison of different integration platforms, we
identified the main functional requirements for usable and configuration friendly
interoperability platforms. One important aspect is the ability to remotely man-
age the integration platform, automating the configuration for the end user as
much as possible.

Fig. 2. Functional Requirements and Quality Attributes

This remote management entails that it should be possible to:

Monitor the interoperability platform and its environment: externalizing the
local information so that it can be used for further analysis or improved
diagnostics.

Configure the local interoperability platform.
Automatically install new software to support additional technologies (for

example install a new driver on the platform) or additional applications
without any physical interaction with the local gateway. This allows to ship
a lightweight gateway platform and only install the required drivers.

Diagnose the system based on the externalized monitoring information: detect
and solve problems without user intervention.

As interoperability platforms are meant to be used over a timespan of multiple
years, and will change as the technologies evolve, modifiability is an important
quality attribute for the remote management system. In addition to this, when



Remote Device Management of a Large Set of Heterogeneous Devices 5

the remote management system is responsible for managing multiple local gate-
ways, the information externalized will require the application to be scalable.
Furthermore, since the goal of this remote management is to take away much of
the installation and configuration burden, usability is of key importance.

4 Architecture

The general decomposition of the system is shown in Figure 3. We can make
a distinction between the gateway plugin, located on the local interoperability
gateway, and the remote management system. The gateway plugin is responsible
for interacting with the interoperability platform installed on the gateway, for
externalizing the information that is available on the gateway and executing
commands that it receives from the remote management system. The remote
management system (called Remote Manager in the figure), is responsible for
analysing and acting upon the information it receives through both the plugin
and the web client which provides a view on the monitored data for the end
user, and can also be used by an administrator to manually trigger actions on
the connected gateways.

Fig. 3. High level deployment overview.

4.1 Monitoring information generated by the Gateway Plugin

The gateway plugin is tightly coupled with the integration platform running on
the gateway. Choosing a different integration platform (e.g. one from Table 1),
will require changing the gateway plugin implementation. The plugin collects
information about the status of the platform (whether it is still online, or for
example how much of the gateway system resources are used), the devices in
the environment of the gateway, installed software, or errors that occur. This
information is sent to the remote management system over the public Internet.
Based on the commands that are included in the response received from the re-
mote management server, the plugin can execute appropriate actions, including
control of local devices. For example, when an EnOcean USB dongle is plugged



6 Heleen Vandaele et al.

in at the local gateway, the gateway plugin will detect this device via the plat-
form and notify the remote management system. In the response of the remote
management system, an installation command for the EnOcean driver will be
included. The plugin subsequently can execute the necessary steps to install that
driver. The integration platform will be able to support EnOcean from then on.

4.2 Scalability through RESTful Design

The gateway plugin and the remote management system exchange REST mes-
sages. REST, which stands for Representational State Transfer [5], is a client-
server model where the client and server are separated by a uniform interface
and the messages are stateless. Each message should contain all the information
that is needed by the remote management system to understand the request. To
make this REST interface suitable for dynamic load balancing, when the amount
of local gateways becomes larger than the amount of manageable gateways for
one remote manager, the HATEOAS (hypermedia as the engine of application
state [9]) principle is used. These principles state that the client must interact
with the application entirely through the content provided by the server. This
means that, for example when the local gateway is started and sends its first
message to the remote management system, the response of the remote manager
will contain the possible actions the client needs to proceed, as well as the web
links to execute these actions. In further communication, the client will use the
links that were provided in the previously received responses. This makes the
client independent of where the server is located, and allows the server to dy-
namically redirect a client (based on e.g. the load of a particular instance of the
remote management system, the profile assigned to a gateway, or even the type
of request) or even migrate the remote management system to another location.

4.3 Decomposition of the Remote Management System

A more detailed decomposition of the Remote Management System is displayed
in Figure 4. A REST request arrives from the gateway plugin at the Remote
Management System, in the Communicator module. To analyse the different
messages that are received, various Management components can subscribe to
receive the information they are interested in. However, to ensure that the re-
sponse time remains acceptable (within 2 seconds, according to the study per-
formed in [12]), the Communicator starts a coordination session to verify that the
Management Plugins provide a response well within time. All Management com-
ponents process the information asynchronously, log everything into the knowl-
edge repository, and provide a response in the form of Commands that have to
be executed at the gateway. When all subscribed Management components have
their response ready, or when the maximum time-out has elapsed, the coordi-
nation ends and the Communicator will send a response containing all available
Commands. When a management component fails to provide a Command on
time, this Command will be included in the next response.



Remote Device Management of a Large Set of Heterogeneous Devices 7

Fig. 4. Architectural Decomposition of the Remote Management System.

The Gateway Plugin is responsible to translate all information generated by
the local gateway to the concepts understood by the Remote Management Sys-
tem. The Remote Management System can process information about the local
gateway, e.g. resources used, plugins loaded and errors that occurred. Apart from
that, information about devices and included services that are discovered by the
local gateway can be sent. A technology-agnostic model is used to be able to
represent all information about the discovered devices and services. This model
is based on work done at Ghent University on the DYAMAND platform [14].
This model includes among others the concept of state variables that model the
state of services in a generic way. Every time a state change is generated by a
local device, the local gateway receives and translates it to the model used by
the Remote Management System. Furthermore, services can contain Commands
that can be executed locally. The Remote Management System will piggyback
these commands using the next response sent to the gateway. This means that
commands that are triggered by a local event can be executed immediately (given
that the responsible Management component is loaded). In contrast, commands
that are not the direct consequence of a local trigger must wait until the Gate-
way Plugin contacts the Remote Management System. Since the information
mentioned before are sporadic events, a heartbeat is sent every 30 seconds. This
enables monitoring of the local gateway in absence of other local events and
ensures that commands will be executed within the heartbeat interval (as long
as the gateway is online).

This architecture is extensible, as new Management components can be added
to the system. Due to the asynchronous behaviour of these Management compo-
nents, they can not only react quickly to incoming messages, but can also per-
form long-running analysis of data in the Knowledge Repository, which contains
all information collected about the gateways that are managed by the remote
management system. The Web component provides a view on the Knowledge



8 Heleen Vandaele et al.

Repository for making monitoring information available to the end user. An ad-
ministrative user can also issue new Commands that will be sent to the gateway
once the next coordination session ends, using the Web component.

5 Proof of Concept

As a proof of concept, we have built a prototype implementation of our archi-
tecture using the DYAMAND interoperability framework as local integration
platform. DYAMAND enables flexible protocol support with zero user interac-
tion, as mentioned in a case study in a professional environment in [13] in which
the requirements for a remote management system are expressed based on real-
life experiences. All concepts understood by the Remote Management System
are supported by DYAMAND. However, in this prototype only a limited subset
is used:

– Heartbeat request - periodically sent to indicate that the installation is
online

– Plugin request - sent when a new DYAMAND plugin is installed (e.g. a
device driver for a certain technology)

– Device request - sent when the DYAMAND framework had detected a new
device

Using a different local gateway involves translating the concepts used by
the local gateway implementation to the concepts of the Remote Management
System. Depending on the different concepts supported by the local gateway,
some functionality may not be available.

The REST interface is implemented using Jersey1 and runs on a Glassfish2

server. The Knowledge Repository uses JPA with a Hibernate3 backend to access
the database.

At the remote manager side, several management components wait to react
to REST requests arriving at the interface: for each type of request a specific ana-
lyser is implemented. The Heartbeat Analyser checks whether the heartbeat it
received originated from a new or existing installation and updates the Knowl-
edge Repository with the timestamp of the last received heartbeat. The path
through the architecture is displayed by the yellow line in Figure 5. The Device
Analyser handles information received with a device online request, adding new
device information to the Knowledge Repository. The Plugin Analyser adds a
new installed plugin to the list of plugins that are installed at the local gateway.
This is the blue path displayed in Figure 5.

We also implemented two Management components that analyse the Knowl-
edge repository. The New Technology Analyser is responsible for checking

1 https://jersey.java.net/
2 https://glassfish.java.net/
3 http://hibernate.org/



Remote Device Management of a Large Set of Heterogeneous Devices 9

Fig. 5. Control flow path through the remote manager for the heartbeat, plugin and
device requests. Each color represents a different scenario.

whether newly detected devices, added to the Knowledge Repository by the De-
vice Analyser, are indicators for unsupported technologies in the local gateway
environment. For example, when plugging in an EnOcean USB, this is detected
by the gateway plugin, which sends a device online request, resulting in the de-
vice being added to the Knowledge Repository by the Device Analyser. This is
picked up by the New Technology Analyser that decides the EnOcean support
plugin must be installed. This adds an installation command to the response
that is sent back to the gateway. The red path in Figure 5 displays this scenario.
The New Plugin Analyser listens for new plugins that are added to the Knowl-
edge Repository from the web user interface, and puts an installation command
in the waiting line to be added to a response, as soon as the user adds a new (to
be installed) plugin via the web interface. This is displayed in Figure 5 by the
green path.

6 Evaluation

Revisiting the scenario to compare the interoperability platforms in Section 2,
we now have a complete automatic system for detecting and installing a new
EnOcean device. Initially the gateway will only have a basic USB device driver
installed. Once the EnOcean USB stick is plugged in, the EnOcean driver is
automatically downloaded and installed, and new EnOcean devices are auto-
matically detected and monitored. Using the web interface, one can also install
additional application plugins on the local gateway.

The implemented prototype focused on installing support for a new technol-
ogy. Other use cases include, but are not limited to, generating alarms whenever
always-on devices are no longer discovered or when the state of a particular de-



10 Heleen Vandaele et al.

vice is erroneous, executing commands on local devices based on state of devices
located in the same or other installation sites, etc.

To evaluate the scalability of the system, we measured the response times
for requests coming from multiple gateways sending various requests. Each sim-
ulated gateway sends a heartbeat every 30 seconds, a device online request every
minute and one plugin request in a 3 minute timespan as depicted on Figure 6.
When a new plugin is installed, this is followed by 10 new devices that come
online, simulating freshly installing support for a new technology. We use JMeter
to send simultaneous requests for n gateways, n increasing from 1 to 1700.

Fig. 6. Visualisation of the test scenario: each active gateway sends a heartbeat every
30s, a device online request every minute and one plugin installed request.

We repeated the experiment 10 times and visualized the results in Figure 7.
The experiments were conducted on a server equipped with an Intel Xeon E5-
2650 CPU clocked at 2.6GHz and 48GiB of RAM.

The left Y-axis shows the response time in milliseconds on a logarithmic scale
for all graphs except Error, while the right axis’ unit is the relative amount of
lost requests in percentage for the Error graph. Up until 950 gateways using
the same instance of the Remote Management System, the performance is up
to par. When additional gateways are added, the maximum amount of parallel
requests that can be handled within performance bounds by that instance is
reached, which results in a rapid decrease of the performance of some requests.
Although the median stays more or less the same, the average response time flirts
with the 2-second threshold and the maximum response time skyrockets which
implies that most requests still get processed fast enough, but that a percentage
of requests have to wait for as long as 10 seconds. Although performance was not



Remote Device Management of a Large Set of Heterogeneous Devices 11

Fig. 7. Aggregated results for the test scenario, using JMeter to send data according
to the scheme from Figure 6

the main focus of the prototype (technology choices like JPA and Hibernate were
inherited from a predecessor project), this evaluation learns that it is possible
to implement the presented functionality in a scalable way if you leverage the
benefits of HATEOAS.

7 Conclusion

The interoperability platforms providing a solution for the interoperability is-
sues between heterogeneous devices, often are not designed for ease of installation
and configuration that is important for the usability of these platforms. Key re-
quirements therefore include monitoring, diagnostics, automated configuration
and automatic software installation. For such usability, it is critical to avoid
manual intervention and allow technically trained supervision of geographically
distributed integration gateways. In this paper we have presented a scalable
architecture for a remote management platform, aiming to reduce the configura-
tion burden for the end user. New technologies are automatically detected at the
local gateway, and the required drivers are automatically fetched and installed,
resulting in a lightweight gateway installation. We built a proof of concept of
our system, showing it can easily manage hundreds of installations on a single
server. As future work, we aim to look into more complex management com-
ponents, i.e., for automatic fault detection or other data analysis. We will also
investigate how to better handle technologies that require manual configuration,
such as device pairing in ZigBee, or cross-technology discovery, e.g. the Philips
Hue bridge that can be discovered locally using UPnP.

Acknowledgements

Part of the work was supported by the iMinds IoT research program.



12 Heleen Vandaele et al.

References

1. AllSeen Alliance. A Common Language for the Internet of Everything, November
2014.

2. S. Arrizabalaga, P. Cabezas, J. Legarda, and A. Salterain. Multi-Residential Gate-
way: an Innovative Concept and a Practical Approach. IEEE Transactions on
Consumer Electronics, 54(2):444–452, May 2008.

3. Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee, Ste-
fan Saroiu, and Paramvir Bahl. An Operating System for the Home. In NSDI.
USENIX, April 2012.

4. J. C. Duenas, J. L. Ruiz, and M. Santillan. An End-to-End Service Provision-
ing Scenario for the Residential Environment. IEEE Communications Magazine,
43(9):94–100, 2005.

5. Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

6. D. Hughes, K. Thoelen, J. Maerien, N. Matthys, J. Del Cid, W. Horre, C. Huy-
gens, S. Michiels, and W. Joosen. LooCI: The Loosely-coupled Component In-
frastructure. In Network Computing and Applications (NCA), 2012 11th IEEE
International Symposium on, pages 236–243. IEEE, August 2012.

7. AutomotiveIT International. Gartner Laments Absence of Internet-of-Things Stan-
dards, February 2015.

8. Choonhwa Lee, D. Nordstedt, and S. Helal. Enabling Smart Spaces with OSGi.
IEEE Pervasive Computing, 2(3):89–94, July 2003.

9. Wayne Lee. Why HATEOAS a Simple Case Study on the often Ignored REST
Constraint, June 2009.

10. Shou-Chih Lo, Ti-Hsin Yu, and Chih-Cheng Tseng. A Remote Control and Media-
Sharing System using Smart Devices. Journal of Systems Architecture, 60(8):671–
683, September 2014.

11. D. Marples and P. Kriens. The Open Services Gateway Initiative: an Introductory
Overview. IEEE Communications Magazine, 39(12):110–114, December 2001.

12. Fiona F. Nah. A Study on Tolerable Waiting Time: How Long are Web Users
Willing to Wait? Behaviour & Information Technology, 23(3):153–163, May 2004.

13. J. Nelis, H. Vandaele, M. Strobbe, A. Koning, F. De Turck, and C. Develder.
Supporting Development and Management of Smart Office Applications: A DYA-
MAND Case Study. In Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on, pages 1053–1058, May 2015.

14. J. Nelis, T. Verschueren, D. Verslype, and C. Develder. DYAMAND: DYnamic,
Adaptive MAnagement of Networks and Devices. In Local Computer Networks
(LCN), 2012 IEEE 37th Conference on, pages 192–195. IEEE, October 2012.

15. openHAB UG. openHAB, Empowering the Smart Home, Sep 2014.
16. OpenRemote Inc. OpenRemote, Open Source Automation Platform, Sep 2014.
17. Janessa Rivera and Rob van der Meulen. Gartner Says the Internet of Things

Installed Base Will Grow to 26 Billion Units By 2020, December 2013.
18. Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol

(CoAP). RFC 7252, June 2014.
19. Technicolor. Discover Qeo, November 2014.
20. Peter Utton and E. Scharf. A Fault Diagnosis System for the Connected Home.

IEEE Communications Magazine, 42(11):128–134, November 2004.
21. D. Valtchev and I. Frankov. Service Gateway Architecture for a Smart Home.

Comm. Mag., 40(4):126–132, April 2002.
22. Zodianet. Zodianet, Home Robotics, Sep 2014.


