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Abstract: In this paper, a non-cooperative distributed model predictive control (DMPC)
algorithm for tracking constant references is developed and evaluated. As such, an augmented
model is employed (i.e. the control loop is embedded with integrators) and the augmented state
contains the state increments and the error between the reference and the predicted output. The
algorithm is tested in real life experiments on the quadruple tank process with non-minimum
phase behaviour. The experimental results show acceptable performance index for the DMPC
method when compared with the centralized approach.

Keywords: non-cooperative DMPC, reference tracking, two agent systems, MIMO systems,
non-minimum phase systems

1. INTRODUCTION

In process industry, the distributed model predictive con-
trol (DMPC) methodology is an alternative control choice
when trying to avoid the burden of the centralized control
strategy (Venkat et al., 2007). According to (Christofides
et al., 2013), the DMPC methods can be divided into:
i) cooperative DMPC, in which each local controller op-
timizes a global cost function or ii) non − cooperative
DMPC, if a local cost function is minimized. Furthermore,
in (Scattolini, 2009) the DMPC algorithms are classified
depending on the topology of the communication network
into: fully connected or partially connected algorithms.
From the point of view of the amount of information
exchanged between the local controllers, the algorithms
can be: i) non− iterative, if the information is exchanged
only once per sampling period or ii) iterative, if the local
controllers exchange information more than once within
one sampling period.

The offset-free tracking of a reference signal is one of
the most common control requirements. In (Maeder and
Morari, 2007; Faanes and Skogestad, 2005; Borrelli and
Morari, 2007) a centralized method for tracking constant
references is presented. The idea is to use an integrator
as the disturbance model to account for disturbances
and plant-model mismatch. Furthermore, the steady-state
values for the states and the given disturbance are used
to ensure an offset-free tracking. This approach, although
efficient, requires a centralized model to compute the
steady-state values and is not available in the distributed
MPC context.

In (Betti, 2013), there are several solutions for the offset-
free tracking problem, all using an integrator in the control
loop. The solutions are based on: i) introducing an artificial
disturbance which will be estimated together with the
model states (Pannocchia and Rawlings, 2003) ii) using
an integrator as an internal model for the reference and
being directly introduced in the control loop (Magni and
Scattolini, 2007) or iii) using a velocity-form model in
which the augmented state is composed from the state
increments and the error (Wang, 2009).

The method proposed in this paper is a sequel of the work
presented in (Maxim et al., 2015) which introduced a non-
cooperative DMPC strategy for two agent systems. The
regulatory problem (i.e. constant reference tracking) was
solved by means of a centralized approach. That consisted
in using the centralized model to obtain the steady-state
values for the states and inputs imposing the outputs
steady-state values. This method, although efficient in
simulation, starts from the premises that the model is
identical with the system, which is not the case in real
life experiments.

Thus, in this paper another non-cooperative DMPC ap-
proach, suitable for tracking constant output references is
suggested. The idea emerged from the centralized MPC
methodology given in (Wang, 2009), where a ‘velocity-
form‘ model is employed introducing an artificial inte-
grator in the system. In this way, the modelling errors
will cease to influence the closed-loop results, yielding a
zero steady state error in the real-time experiment. The

Preprint, 11th IFAC Symposium on Dynamics and Control of Process Systems,
including Biosystems
June 6-8, 2016. NTNU, Trondheim, Norway

Copyright © 2016 IFAC 1079



performance of the method is tested in a reference tracking
experiment on the quadruple tank process from Quanser.

The paper is organized as follows. The next section de-
scribes the proposed state-space DMPC strategy. The
third section presents the quadruple-tank system (Quanser)
and the experimental conditions, along with the real-life
comparative test. A conclusion section summarizes the
main outcome of this paper.

2. DISTRIBUTED MODEL-BASED PREDICTIVE
CONTROL ALGORITHM

In this section, the non-cooperative DMPC formulation is
given. To this end, the preliminaries are first settled (i.e.
the process model is written in a velocity form using state
and input increments). Afterwards, the predictor formula-
tion is derived and the optimal solution is obtained.

2.1 Plant ’velocity-form’ model for predictive controller
design

Consider a linear-time-invariant system composed of
two non-overlapping sub-systems, dynamically coupled
through inputs and subject to state and control con-
straints. Each sub-system is described by the following
dynamics:

xpi(k + 1) = Apixpi(k) +Bpiiui(k) +Bpijuni(k)
yi(k) = Cpixpi(k)

(1)

where k is the time instant, upi ∈ Rmi and yi ∈ Rqi are the
input/output variables of the sub-systems and xpi ∈ Rni

are the states of the sub-systems, with i = 1, 2, j =
1, 2, i 6= j. The subscript ni denotes the neighboring agent
of agent i (i.e. un1 = u2 and un2 = u1). The following
linear constraints in the state and inputs are considered:

xpi ∈ Xi, ui ∈ Ui, i = 1, 2 (2)

where Xi and Ui with i = 1, 2 are defined by a set of linear
inequalities.

Aiming for implementing an offset-free constant reference
tracking algorithm, an integrator, which is an internal
model of constant reference, is included in the control
structure similar to the Internal Model Control principle.
The integral action is applied to the control increments
obtained at the controller output.

Using the methodology described in (Wang, 2009), the dif-
ference operation is applied on both sides of (1) resulting:

∆xpi(k + 1) = Api∆xpi(k) +Bpii∆ui(k) +Bpij∆uni(k),

∆yi(k + 1) =

CpiApi∆xpi(k) + CpiBpii∆ui(k) + CpiBpij∆uni(k)

(3)

with i = 1, 2, j = 1, 2, i 6= j.
The model (3) introduces the increments of the vari-
ables xpi, ui, uni and yi. A new state variable xi(k) =[
∆xpi(k)T yi(k)

]T
, i = 1, 2 is introduced for each sub-

system, resulting the augmented model:

[
∆xpi(k + 1)
yi(k + 1)

]
︸ ︷︷ ︸

xi(k+1)

=

[
Api OT

qi×ni

CpiApi 1

]
︸ ︷︷ ︸

Ai

[
∆xpi(k)
yi(k)

]
︸ ︷︷ ︸

xi(k)

+

[
Bpii

CpiBpii

]
︸ ︷︷ ︸

Bii

∆ui(k) +

[
Bpij

CpiBpij

]
︸ ︷︷ ︸

Bij

∆uni(k)

yi(k) = [Oqi×ni
Iqi ]︸ ︷︷ ︸

Ci

[
∆xpi(k)
yi(k)

]
(4)

which will be used to design the predictive controller. Note
that the new inputs of the state-space model in velocity-
form are ∆ui(k) and ∆uni(k).
The superscript notation T defines the transpose opera-
tion, I is the identity matrix and O is a zero matrix. The
Ai, Bii, Bij and Ci with i = 1, 2, j = 1, 2, i 6= j are
matrices with adequate dimensions of the discrete-time
sub-systems model in velocity-form. The model (4) can
be written in a compact form as:{

xi(k + 1) = Aixi(k) +Bii∆ui(k) +Bij∆uni(k)
yi(k) = Cixi(k)

(5)

with i = 1, 2, j = 1, 2, i 6= j.

2.2 Non-Cooperative DMPC optimization formulation

For a linear-time-invariant system composed of two sub-
systems described by equation (1), a non-cooperative
DMPC architecture is defined with two agents commu-
nicating between them. Each sub-system i is controlled by
a local agent (a predictive controller) which has available
at any time instant k the information regarding its own
sub-system.

Based on the velocity-form model of sub-system i (5)
and its corresponding state xi, the control variable ∆ui
is computed. At each sampling time, each agent solves
a reduced dimension optimization problem assuming a
given fixed input trajectory for its neighbour. The control
objective of each agent is to regulate the sub-system to a
constant reference while guaranteeing that the constraints
are satisfied.

Using the sub-systems velocity-form model (5) for de-
signing the predictive controllers, the integral action is
naturally embedded in the control algorithms. Thus, the
constant reference tracking is obtained for two agent sys-
tems.

The main idea is that each sub-system solves a MPC op-
timization problem considering that its dynamics is given
by (5) and the neighbour future input sequence ∆uni(k+
l) of sub-system i is known in advance over the control
horizon Nc, l = 0, Nc − 1. Hence, the only information
that agent i must receive from its neighbour ni at time k
is ∆uni(k + l). In order to obtain a computationally ef-
ficient non-cooperative DMPC algorithm, we constructed
the neighbour future input sequence at time instant k as in
(Maxim et al., 2015) using the last Nc − 1 elements of the
precedent optimal control sequence computed at instant
k − 1. To preserve the same length for the input vectors,
the last element from the vector is doubled. This is similar
with an one unit shorter control horizon for the neighbour
(i.e. Nc − 1 instead of Nc).
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∆Uni(k) =


∆u∗ni(k|k − 1)

...
∆u∗ni(k +Nc − 2|k − 1)
∆u∗ni(k +Nc − 2|k − 1)

 (6)

Therefore, at time k− 1 each agent i, i = 1, 2 transmits to
the other the optimal sequence ∆U∗

i (k − 1) which is used
at time k to create ∆Uni(k) (i.e. equation (6)).

For each agent i, a local cost function is defined as:

Ji(xi(k),∆Ui(k),∆Uni(k)) =

(Rsi − Yi)T (Rsi − Yi) + ∆Ui(k)TRi∆Ui(k) (7)

based on the future output predictor:

Yi = [yi(k + 1|k) . . . yi(k +Np|k)]
T

the own future input sequence

∆Ui(k) = [∆ui(k|k) . . . ∆ui(k +Nc − 1|k)]
T

with i = 1, 2, Np the prediction horizon and Nc the
control horizon (Nc ≤ Np). In this paper, Nc = Np and
the predicted reference trajectory Rsi ∈ RNp , i = 1, 2
is assumed constant and equal with the setpoint at time
instant k. The weight matrices have the form Ri = αINc

,
i = 1, 2, α > 0.

Using the velocity-form model (5), the prediction of state
and input variables are computed:

xi(k + l|k) = Al
ixi(k) +Al−1

i Bii∆ui(k|k) + . . .+

ANp−l
i Bii∆ui(k + l − 1|k) +Al−1

i Bij∆uni(k|k) +

+ . . .+ANp−l
i Bij∆uni(k + l − 1|k)

l = 1, Np (8)

and using the output equation given in (5) the output
predictor is achieved:

yi(k + l|k) = CiA
l
ixi(k) + CiA

l−1
i Bii∆ui(k|k)

+ . . .+ CiA
Np−l
i Bii∆ui(k + l − 1|k) +

CiA
l−1
i Bij∆uni(k|k) + . . .+

CiA
Np−l
i Bij∆uni(k + l − 1|k)

l = 1, Np (9)

Note that the cost function (7) depends on the current
measured state xi(k) and on the neighbour future input
sequence ∆Uni(k) because the output predictor Yi, i = 1, 2
is computed in the following matrix form using (9):

Yi = Ãixi(k) + B̃ii∆Ui(k) + B̃ij∆Uni(k)

i = 1, 2, j = 1, 2, i 6= j (10)

where

Ãi =
[
CiAi CiA

2
i . . . CiA

Np

i

]T
B̃ii =


CiBii 0 . . . 0
CiAiBii CiBii . . . 0
. . . . . . . . . . . .

CiA
Np−1
i Bii CiA

Np−2
i Bii . . . CiA

Np−Nc

i Bii


and Bij is obtained similar with Bii.

After the substitution of (10) into the cost function (7)
and some matrix manipulation, the following explicit form
for the cost function is obtained:

Ji(xi(k),∆Ui,∆Uni) =

(Rsi − Ãixi(k))T (Rsi − Ãixi(k)) + 2∆UT
i B̃

T
ii B̃ij∆Uni

−2∆UT
i B̃

T
ii [Rsi − Ãixi(k)]− 2∆UT

niB̃
T
ij [Rsi − Ãixi(k)]

+2∆UT
i (B̃T

ii B̃ii +Ri)∆Ui + ∆UT
ni(B̃

T
ijB̃ij)∆Uni

(11)

with i = 1, 2, j = 1, 2, i 6= j.
As mentioned before, in (11) the free variable is
∆Ui(k), i = 1, 2. If there are no constraints imposed on
the control variable or the outputs, the optimal solution is
obtained having the first derivative of (11) equal to zero
yielding:

∆U∗
i (k) = (B̃T

ii B̃ii +Ri)
−1B̃T

ii [Rsi − Ãixi(k)]

−(B̃T
ii B̃ii +Ri)

−1B̃T
ii B̃ij∆Uni, (12)

with i = 1, 2, j = 1, 2, i 6= j.

On the other hand, dealing with constraints directly in
the optimization problem is one of the MPC features.
The constraints are imposed on the control variables
incremental variation:

∆Umin
i ≤ ∆Ui(k) ≤ ∆Umax

i (13)

on the amplitude of the control variables:

Umin
i ≤ Ui(k) ≤ Umax

i (14)

and on the outputs:

Y min
i ≤ Yi(k) ≤ Y max

i (15)

with i = 1, 2, where Umin
i = [umin

i . . . umin
i ]T is a column

vector with Nc elements which contains the lower limit
imposed on each input element in the prediction window.
Similar definition are used for Umax

i ,∆Umin
i ,∆Umax

i ,Y min
i ,

Y max
i .

According to the quadratic programming formulation, (14)
is split into two inequalities:

−Ui(k) ≤ −Umin
i

Ui(k) ≤ Umax
i (16)

with i = 1, 2. The same quadratic notation is also used
for (13) and (15).

Next, the control variable constraints are parametrized in
the same parameter vector ∆Ui, i = 1, 2 obtaining:

ui(k|k)
ui(k + 1|k)

...
ui(k +Nc − 1|k)


︸ ︷︷ ︸

Ui(k)

=


1
1
...
1


︸ ︷︷ ︸
Mij

ui(k − 1)

+


1 0 0 . . . 0
1 1 0 . . . 0
...
1 1 1 . . . 1


︸ ︷︷ ︸

Mii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Nc − 1|k)


︸ ︷︷ ︸

∆Ui

(17)
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i = 1, 2, j = 1, 2, i 6= j.
Substituting (17) in (16) a compact form is obtained:

−(Mijui(k − 1) +Mii∆Ui(k)) ≤ −Umin
i

(Mijui(k − 1) +Mii∆Ui(k)) ≤ Umax
i (18)

The output constraints are also parametrized using the
definition given in (10) obtaining:

−(Ãixi(k) + B̃ii∆Ui(k)) ≤ −Y min
i + B̃ij∆Uni(k)

(Ãixi(k) + B̃ii∆Ui(k)) ≤ Y max
i − B̃ij∆Uni(k) (19)

where i = 1, 2, j = 1, 2, i 6= j.
All the constraints (13),(18),(19) can be written in a
matrix form as:

−I
I
−Mii

Mii

−B̃ii

B̃ii

∆Ui =


−∆Umin

i
∆Umax

i

−Umin
i +Mijui(k − 1)

Umax
i −Mijui(k − 1)

−Y min
i + Ãixi(k) + B̃ij∆Uni

Y max
i − Ãixi(k)− B̃ij∆Uni

(20)

with i = 1, 2, j = 1, 2, i 6= j and I the identity matrix.
Finally, the constrained optimization problem is formu-
lated as: find the minimum of the cost function (11)
subject to (20). The proposed non-cooperative DMPC
algorithm for tracking is described as follows:

• Step 1: Initialization: the states xpi(k) are measured
and the augmented states xi(k) are computed. Then,
using the optimal solution from time k − 1 (i.e.
∆U∗

ni(k − 1)), the neighbour future input sequence
∆Uni(k) is created;

• Step 2: Optimization: solve the optimal control prob-
lem:

min
∆Ui(k)

Ji

with Ji defined in equation (11) subject to the con-
straints (20);

• Step 3: Implementation: apply to the sub-system
control signal using the first element of the integrated
optimal solution (i.e. u(k) = u(k − 1) + ∆u∗i (k|k)

• Step 4: Communication: send out the optimal solu-
tion found at time k (i.e. ∆U∗

i (k)) to the other agent,
increment the current time to k+1 and return to Step
1 at the next sampling time.

To conclude, each agent i, i = 1, 2 solves a local opti-
mization problem using: i) the current state measurement
xpi(k) and ii) the optimal input strategy ∆U∗

ni(k − 1) re-
ceived at the previous sampling instant from the neighbour
agent to whom it is connected.

3. EXPERIMENTAL TESTS

Of all applications existing in literature, the four-tank sys-
tem seems to be a representative proof-of-concept bench-
mark used to illustrate the efficacy of the proposed MPC
and DMPC algorithms. The seminal work of Johansson
(Johansson, 2000) initiated a series of system variations
and MPC algorithms (Gatzke et al., 2000; Mercangoz and
Doyle III, 2007; Alvarado et al., 2011) and robust control
strategies (Vadigepalli et al., 2001). A comparative study
of DMPC strategies is given in (Alvarado et al., 2011).

3.1 Process description

In this section the quadruple tank system from Quanser
depicted in Fig. 1 is described. The control objective is
to regulate the level of the water in the lower tanks (L2,
L4) by manipulating the water flows (i.e. the voltages of
the two pumps Vp1, Vp2). There is a strong coupling effect
between the inputs and the outputs, (e.g. in Tank 2 there
are two inputs: the flow from Pump 2 through Out 2,
marked with red line, and the flow from Pump 1 through
Out 1, denoted with green line, that is the output flow
from Tank 1).

Fig. 1. Schematic diagram of the quadruple tank process
from Quanser with non-minimum phase dynamics.

In Tank 2 there is a greater flow coming from Pump 1, via
Tank 1, than the flow coming directly from Pump 2. This
is due to the fact that the outlet diameter Out 1 is bigger
than the diameter Out 2, while the outgoing orifices from
each tank Doi , i = 1...4 have all the same diameter. The
same conditions applies for Tank 4.

The state-space linearised mathematical model is obtained
from the non-linear model derived in (Johansson, 2000)
using the setup parameters (i.e. the cross-sections of the
tanks) provided by Quanser. The model has been rewritten
with the tanks notations used in Fig. 1:

xp(k + 1) = Axp(k) +Bu(k)
y(k) = Cxp(k)

(21)

with

A =

 0.69 0 0 0
0.24 0.89 0 0

0 0 0.29 0
0 0 0.11 0.92



B =

 0 0.08
0.13 0.01
0.18 0
0.02 0.09

C =

[
0 1.05 0 0
0 0 0 0.75

]
(22)

where xp = [x1 x2 x3 x4]T , u = [u1 u2]T and y = [x2 x4]T

are the state, input and output vector respectively. The
numerical values in (22) were obtained for the sampling
period Ts = 1s.

Starting from (21), the velocity-form centralized model is
obtained, using the same procedure described in (3-5) with
the difference that the input vectors are not split. After
that, the centralized cost function is defined like in (7)
and by minimizing it, the unconstrained explicit solution
is obtained.
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For the distributed control purpose, the quadruple tank
system model (21) can be decomposed into two sub-
systems coupled through the inputs (i.e. sub-system #1
composed of Tank 1 and Tank 2 and sub-system #2
obtained from Tank 3 and Tank 4). Each sub-system has
the following states and outputs variables:{

xp1 = [x1 x2]T

y1 = x2

{
xp2 = [x3 x4]T

y2 = x4
(23)

where xi, i = 1, 4 are the states corresponding with the
levels in each tank.

The sub-systems are interconnected through the inputs be-
cause each pump feeds water in both sub-systems depend-
ing on the valves configuration (i.e. parameters γ1, γ2). For
example, if γ1=0.25 than one quarter of Pump 2 water flow
is fed into Tank 2 through Out 2 and three quarters supply
Tank 3 through Out 1. The current setup exhibits non-
minimum phase behaviour (i.e Out 2 flow<Out 1 flow).

The numerical values for the velocity-form sub-system
models given in (5) are:

A1 =

[
0.69 0 0
0.24 0.89 0
0.25 0.94 1

]
B11 =

[
0

0.13
0.14

]

B12 =

[
0.08
0.01
0.01

]
C1 = [ 0 0 1 ]

A2 =

[
0.29 0 0
0.11 0.92 0
0.08 0.69 1

]
B21 =

[
0.18
0.02
0.01

]

B22 =

[
0

0.09
0.07

]
C2 = [ 0 0 1 ]

(24)

In the next section the results of the non-cooperative
DMPC algorithm presented in subsection 2.2 are given.

3.2 Results

In this subsection the experimental results obtained on
the real life four-tank system from Quanser with non-
minimum phase behaviour are presented. The results were
achieved in a reference tracking experiment structured as
follows: first, each sub-system was brought to steady state
from 0 to 10 cm. Then, the setpoint for the first sub-system
was changed from 10 cm to 12 cm while the reference
for sub-system #2 remained unchanged at 10 cm. After
stabilization, the reference was changed for the second sub-
system from 10 cm to 12 cm while the reference for sub-
system #1 remained at 12 cm.

In Fig 2 the comparative results between the centralized
MPC (plotted with dashed red line) and the proposed
DMPC algorithm (depicted with continuous blue line) for
both sub-systems outputs (i.e. the water level in the lower
tanks denoted with y1 and y2 for sub-system #1 and #2
respectively) are presented. The water levels in the upper
tanks are not controlled.

The centralized and distributed algorithms were imple-
mented using the input weight matrix parameter α = 1200
and α = 3000 respectively. The value was chosen after
several tests, as to obtain the best DMPC result when
compared with centralized MPC. To assess the perfor-

Fig. 2. Real time results for reference tracking on
the quadruple tank process from Quanser with non-
minimum phase dynamics.

Control Algorithm MSE(cm2) ST (s) Eff (V/s)

Centralized MPC(Y1) 0.1997 200 4.3742
DMPC (Y1) 0.2694 200 5.1220

Centralized MPC (Y2) 0.2864 200 6.7276
DMPC (Y2) 0.3619 200 6.4882

Table 1. MSE, ST (settling time) and Eff for
centralized MPC and DMPC in reference

tracking experiment

mance of centralized MPC versus the DMPC algorithm
the following performance indices (i.e. mean squared error
MSE and control effort Eff) were computed:

MSEi =
1

N

∑
[Rsi − Ỹi]T [Rsi − Ỹi]

Effi =
1

N

∑
Ũi

T
Ũi

(25)

where i = 1, 2 is the sub-system index and N is the
total number of discrete-time steps (i.e from time 295s

until 900s). Note that Ỹi denotes a vector containing the

output measurements from sub-system i and Ũi is a vector
composed with the first element from the optimal solution
which was sent at each sampling instant to the process.
Table 1 corresponds to the results given in Fig. 2. The
results indicate that DMPC performs similar to centralized
MPC strategy in the initial part of the experiment, when
the setpoint changes for each sub-system (i.e. y1 analysed
starting from 300 s until 500 s and y2 in the time range
600 s - 800 s). On the other hand, regarding the interaction
between the sub-systems, it is clear that under centralized
MPC sub-system #1 has a more severe reaction when
sub-system’s #2 reference is changed, compared with the
DMPC case.

The performance between the centralized MPC and the
DMPC methods was tested on another sepoint tracking
test, in which the references of both sub-systems were
moved simultaneously in different directions. In Fig. 3 the
results are shown.

The practical benefits of the non-cooperative DMPC are
best experienced in large-scale systems where a centralized
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Fig. 3. Real time results for reference tracking on
the quadruple tank process from Quanser with non-
minimum phase dynamics when the references change
simultaneously.

approach is impossible due to the large numbers of systems
variables and the computational load on the computer in
charge. Our aim was to implement both centralized and
distributed control on a test-bench process and to compare
the performances.

4. CONCLUSION

In this paper a non-cooperative DMPC algorithm for
reference tracking is proposed. The results obtained are
compared with the centralized MPC strategy. The tests
were performed on the same real life plant (the quadruple
tank process from Quanser) and reveal acceptable per-
formance for the DMPC algorithm with a higher MSE
index and a lower implementation complexity. Further
work will focus on a robustness/stability analysis and
will compare the proposed DMPC method with an input-
output DMPC method. Also a more complex system (i.e.
with sub-systems connected through states and inputs)
will be used in experiments.
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