in Engineering, ACOMEN 2014
23-28 7une 2014.

Kernel reconstruction in a semilinear parabolic problem with integral overdetermination

Rob H. De Staelen ${ }^{* 1}$ and Márian Slodička ${ }^{1}$
${ }^{1}$ Department of Mathematical Analysis, Faculty of Engineering and Architecture, Ghent University, B-9ooo Ghent, Belgium
e-mails: rob.destaelen@ugent.be, marian.slodicka@ugent.be

Abstract

A semilinear parabolic problem of second order with an unknown solely time-dependent convolution kernel is considered. The missing kernel is recovered from an additional integral measurement. The existence, uniqueness and regularity of a weak solution is addressed. We design a numerical algorithm based on Rothe's method, derive a priori estimates and prove convergence of iterates towards the exact solution.

Key words: parabolic IBVP, convolution kernel, reconstruction, convergence, a priori estimates

1 Introduction

We want to determine the solution u and reconstructed a solely time-dependent convolution kernel K of the following nonlinear problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta u+K(t) h+(K * u)(t)=f(u, \nabla u), \quad \text { in } \Omega \times \Theta, \tag{1}\\
-\nabla u \cdot \mathbf{n}=g, \quad \text { on } \Gamma \times \Theta, \\
u(\mathbf{x}, 0)=u_{0}(\mathbf{x}),
\end{array}\right.
$$

where Ω is a Lipschitz domain in $\mathbb{R}^{N}, N \geq 1$, with $\partial \Omega=\Gamma$ and $\Theta=[0, T], T>0$, the time frame, when a global measurement

$$
\int_{\Omega} u(\mathrm{x}, t) \mathrm{d} \mathbf{x}=m(t)
$$

is known.
Such type of integro-differential problems arise for example elastoplasticity (cf. [1]) or in the theory of reactive contaminant transport. In [2] one considers the following differential equation

$$
\partial_{t} C+\nabla \cdot(\mathrm{V} C)-\Delta C=\frac{-\rho_{b}}{n} \partial_{t} S
$$

for the aqueous concentration C and sorbed concentration per unit mass of solid S with mass transformation rate in first order kinetics form of

$$
\partial_{t} S=K_{r}\left(K_{d} C-S\right)
$$

with desorption rate K_{r} and equilibrium distribution coefficient K_{d}. This is indeed a problem of type (1) for $u=C$ with

$$
K(t)=-\frac{\rho_{b}}{n} K_{r}^{2} K_{d} e^{-K_{r} t}, \quad h(t)=-\frac{S_{0}}{K_{r} K_{d}} \quad \text { and } \quad f(x, \mathbf{r})=\frac{-\rho_{b}}{n} K_{r} K_{d} x-\mathrm{V} \cdot \mathbf{r} .
$$

We will prove the following existence and uniqueness result.
Theorem Suppose f is bounded and Lipschitz continuous in all variables, $g \in \mathrm{C}^{1}\left(\Theta, \mathrm{~L}^{2}(\Gamma)\right)$, $h \in \mathrm{C}^{0}\left(\Theta, \mathrm{H}^{1}(\Omega)\right) \cap \mathrm{C}^{1}\left(\Theta, \mathrm{~L}^{2}(\Omega)\right)$ and $\min _{t \in \Theta}|(h(t), 1)| \geq \omega>0, m \in \mathrm{C}^{2}(\Theta, \mathbb{R})$ and $u_{0} \in$ $\mathrm{H}^{2}(\Omega)$. Then there exists a unique couple solutions $\langle u, K\rangle$ to (1), where $u \in \mathrm{C}\left(\Theta, \mathrm{H}^{1}(\Omega)\right), \partial_{t} u \in$ $\mathrm{L}^{\infty}\left(\Theta, \mathrm{L}^{2}(\Omega)\right)$ and $K \in \mathrm{C}(\Theta), K^{\prime} \in \mathrm{L}^{2}(\Theta)$.

Moreover we construct a numerical model to solve this problem based on the variational formulation and Rothe's functions [3].

```
Algorithm: numerical scheme in pseudo code
    input : \(T>0, n \in \mathbb{N}\) and functions \(f, g, h, m\) and \(u_{0}\)
    output: kernel \(K\) and solution \(u\) at discrete time steps
    \(\tau \leftarrow T / n ;\)
    \(\theta \leftarrow[0: \tau: T]\);
    \(\mathrm{K} \leftarrow \operatorname{zeros}(n+1)\);
    \(\mathrm{u} \leftarrow \operatorname{eval}\left(u_{0}, \theta\right)\);
    \(\mathrm{K}[0] \leftarrow \frac{1}{\left(h_{0}, 1\right)}\left(\left(f\left(u_{0}, \nabla u_{0}\right), 1\right)-m_{0}^{\prime}-\left(g_{0}, 1\right)_{\Gamma}\right) ;\)
    for \(i=1\) to \(n\) do
        \(\mathrm{K}[i] \leftarrow \frac{1}{\left(h_{i}, 1\right)+m_{0} \tau}\left(\left(f_{i-1}, 1\right)-\left(g_{i}, 1\right)_{\Gamma}-\sum_{k=1}^{i-1} K_{k} m_{i-k} \tau-m_{i}^{\prime}\right) ;\)
        \(\mathrm{u}[i] \leftarrow \operatorname{solveEP}\left(B\left(u_{i}, \phi\right)=F_{i}(\phi)\right) ;\)
```


References

[1] M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, 35. Harlow: Longman Scientific \& Technical; New York: John Wiley \& Sons, Inc. 1987.
[2] J. W. Delleur, The Handbook of Groundwater Engineering, Springer CRC Press, 1999.
[3] J. Kačur, Method of Rothe in evolution equations, Teubner-Texte zur Mathematik, 1985.

