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Abstract

A semilinear parabolic problem of second order with an unknown solely time-dependent
convolution kernel is considered. The missing kernel is recovered from an additional
integral measurement. The existence, uniqueness and regularity of a weak solution is
addressed. We design a numerical algorithm based on Rothe’s method, derive a priori
estimates and prove convergence of iterates towards the exact solution.
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1 Introduction

We want to determine the solution u and reconstructed a solely time-dependent convolution
kernel K of the following nonlinear problem



∂tu − ∆u + K (t )h + (K ∗ u) (t ) = f (u,∇u), in Ω × Θ,
−∇u · n = д, on Γ × Θ,
u (x,0) = u0 (x),

(1)

where Ω is a Lipschitz domain in RN , N ≥ 1, with ∂Ω = Γ and Θ = [0,T ], T > 0, the time
frame, when a global measurement

∫

Ω
u (x,t )dx =m(t )

is known.
Such type of integro-di�erential problems arise for example elastoplasticity (cf. [1]) or in

the theory of reactive contaminant transport. In [2] one considers the following di�erential
equation

∂tC + ∇ · (VC ) − ∆C =
−ρb
n
∂tS

for the aqueous concentrationC and sorbed concentration per unit mass of solid S with mass
transformation rate in �rst order kinetics form of

∂tS = Kr (KdC − S )
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with desorption rate Kr and equilibrium distribution coe�cient Kd . This is indeed a problem
of type (1) for u = C with

K (t ) = −ρb
n
K2
rKde

−Kr t , h(t ) = − S0
KrKd

and f (x ,r) =
−ρb
n

KrKdx − V · r.

We will prove the following existence and uniqueness result.

Theorem Suppose f is bounded and Lipschitz continuous in all variables, д ∈ C1 (Θ,L2 (Γ)),
h ∈ C0 (Θ,H1 (Ω)) ∩ C1 (Θ,L2 (Ω)) and mint ∈Θ |(h(t ),1) | ≥ ω > 0, m ∈ C2 (Θ,R) and u0 ∈
H2 (Ω). Then there exists a unique couple solutions 〈u,K〉 to (1), where u ∈ C(Θ,H1 (Ω)), ∂tu ∈
L∞ (Θ,L2 (Ω)) and K ∈ C(Θ), K ′ ∈ L2 (Θ).

Moreover we construct a numerical model to solve this problem based on the variational
formulation and Rothe’s functions [3].

Algorithm: numerical scheme in pseudo code
input : T > 0, n ∈ N and functions f , д, h,m and u0
output: kernel K and solution u at discrete time steps

1 τ ← T /n;
2 θ ← [0 : τ : T ];
3 K← zeros(n + 1);
4 u← eval(u0,θ );

5 K[0]← 1
(h0,1)

(
( f (u0,∇u0),1) −m′0 − (д0,1)Γ

) ;

6 for i = 1 to n do

7 K[i]← 1
(hi ,1) +m0τ

*,( fi−1,1) − (дi ,1)Γ −
i−1∑

k=1
Kkmi−kτ −m′i+-;

8 u[i]← solveEP(B (ui ,ϕ) = Fi (ϕ));
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