

Kernel reconstruction in a semilinear parabolic problem with integral overdetermination

Rob H. De Staelen^{*1} and Márian Slodička¹

¹ Department of Mathematical Analysis, Faculty of Engineering and Architecture, Ghent University, B-9000 Ghent, Belgium

e-mails: rob.destaelen@ugent.be, marian.slodicka@ugent.be

Abstract

A semilinear parabolic problem of second order with an unknown solely time-dependent convolution kernel is considered. The missing kernel is recovered from an additional integral measurement. The existence, uniqueness and regularity of a weak solution is addressed. We design a numerical algorithm based on Rothe's method, derive a priori estimates and prove convergence of iterates towards the exact solution.

Key words: parabolic IBVP, convolution kernel, reconstruction, convergence, a priori estimates

1 Introduction

We want to determine the solution u and reconstructed a solely time-dependent convolution kernel K of the following nonlinear problem

$$\begin{cases} \partial_t u - \Delta u + K(t)h + (K * u)(t) = f(u, \nabla u), & \text{in } \Omega \times \Theta, \\ -\nabla u \cdot \mathbf{n} = g, & \text{on } \Gamma \times \Theta, \\ u(\mathbf{x}, 0) = u_0(\mathbf{x}), \end{cases}$$
(1)

where Ω is a Lipschitz domain in \mathbb{R}^N , $N \ge 1$, with $\partial \Omega = \Gamma$ and $\Theta = [0,T]$, T > 0, the time frame, when a global measurement

$$\int_{\Omega} u(\mathbf{x},t) \mathrm{d}\mathbf{x} = m(t)$$

is known.

Such type of integro-differential problems arise for example elastoplasticity (cf. [1]) or in the theory of reactive contaminant transport. In [2] one considers the following differential equation

$$\partial_t C + \nabla \cdot (\mathbf{V}C) - \Delta C = \frac{-\rho_b}{n} \partial_t S$$

for the aqueous concentration C and sorbed concentration per unit mass of solid S with mass transformation rate in first order kinetics form of

$$\partial_t S = K_r (K_d C - S)$$

with desorption rate K_r and equilibrium distribution coefficient K_d . This is indeed a problem of type (1) for u = C with

$$K(t) = -\frac{\rho_b}{n} K_r^2 K_d e^{-K_r t}, \quad h(t) = -\frac{S_0}{K_r K_d} \quad \text{and} \quad f(x, \mathbf{r}) = \frac{-\rho_b}{n} K_r K_d x - \mathbf{V} \cdot \mathbf{r}.$$

We will prove the following existence and uniqueness result.

Theorem Suppose f is bounded and Lipschitz continuous in all variables, $g \in C^1(\Theta, L^2(\Gamma))$, $h \in C^0(\Theta, H^1(\Omega)) \cap C^1(\Theta, L^2(\Omega))$ and $\min_{t \in \Theta} |(h(t), 1)| \ge \omega > 0$, $m \in C^2(\Theta, \mathbb{R})$ and $u_0 \in H^2(\Omega)$. Then there exists a unique couple solutions $\langle u, K \rangle$ to (1), where $u \in C(\Theta, H^1(\Omega))$, $\partial_t u \in L^{\infty}(\Theta, L^2(\Omega))$ and $K \in C(\Theta)$, $K' \in L^2(\Theta)$.

Moreover we construct a numerical model to solve this problem based on the variational formulation and Rothe's functions [3].

Algorithm: numerical scheme in pseudo code
input : $T > 0, n \in \mathbb{N}$ and functions f, g, h, m and u_0
output : kernel <i>K</i> and solution <i>u</i> at discrete time steps
$\tau \leftarrow T/n;$
$2 \ \theta \leftarrow [0:\tau:T];$
$_{3} \text{ K} \leftarrow \text{zeros}(n+1);$
$_{4}$ u \leftarrow eval $(u_{0}, \theta);$
₅ K[0] ← $\frac{1}{(h_0, 1)}$ ((f(u_0, ∇u_0), 1) − m'_0 − (g_0, 1)_Γ);
6 for $i = 1$ to n do
7 $K[i] \leftarrow \frac{1}{(h_i, 1) + m_0 \tau} \left((f_{i-1}, 1) - (g_i, 1)_{\Gamma} - \sum_{k=1}^{i-1} K_k m_{i-k} \tau - m'_i \right);$
8 $\lfloor u[i] \leftarrow solveEP(B(u_i,\phi) = F_i(\phi));$

References

- M. RENARDY, W.J. HRUSA AND J.A. NOHEL, *Mathematical problems in viscoelasticity*, Pitman Monographs and Surveys in Pure and Applied Mathematics, 35. Harlow: Longman Scientific & Technical; New York: John Wiley & Sons, Inc. 1987.
- [2] J. W. DELLEUR, The Handbook of Groundwater Engineering, Springer CRC Press, 1999.
- [3] J. KAČUR, Method of Rothe in evolution equations, Teubner-Texte zur Mathematik, 1985.