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Abstract—Accurate modeling of parameterized microwave and
RF components often requires a large number of full-wave
electromagnetic simulations. In order to reduce the overall
simulation cost, a sequential sampling algorithm is proposed that
selects a sparse set of data samples which characterize the overall
response of the system. The resulting data samples can be fed into
existing modeling techniques. The effectiveness of the approach
is illustrated by a parameterized H-shaped microwave antenna.

I. INTRODUCTION

Accurate circuit models are needed for the design, study and
optimization of passive microwave and RF components [1]-
[7]. To this end, parameterized analytical models are needed
which characterize the response of the system as a function
of frequency and layout variables. Such models are fast to
evaluate, and offer a lot of different analysis possibilities (e.g.
optimization, sensitivity analysis and what-if analysis) [9].

The calculation of such models requires a large number
of full-wave electromagnetic simulations, which is often time
consuming [10]. In order to reduce the computational work-
load, a new sequential sampling strategy [11] is modified such
that data samples are scattered in terms of all parameters,
including angular frequency [12]. It automatically selects a
suitable sample distribution, which accurately captures the
dynamical behavior of the system. This set of representative
data samples can be fed into an arbitrary modeling technique,
provided that it can deal with scattered data. Since the selection
of data samples is completely decoupled from the model
building part, the new algorithm is much more flexible and
generic, compared to existing sampling approaches [13]-[17].

The benefits of the sampling approach are illustrated by
applying it to a scalable microwave H-antenna example.

II. PRELIMINARIES AND NOTATION

Modeling algorithms are used to compute parametric mod-
els from S-parameter data {g⃗, H(g⃗)}. These S-parameters
H(g⃗) ∈ C depend on several parameters g⃗ = {g(n)}Nn=1 ⊂
RN such as the angular frequency and design variables (met-
allizations of a component, substrate parameters,...). To limit
the overall cost of full-wave EM simulations, a sequential
sampling strategy is proposed that determines up-front a sparse
set of data samples that characterize the overall design space.

III. METHODOLOGY OF SAMPLING ALGORITHM

The sequential sampling algorithm starts from a small set
of initial data samples, and selects additional data samples in
a sequential way until the algorithm is terminated. It makes a
trade-off between exploration and exploitation [18], [19] :

• Exploration is the act of exploring the design space in
order to find key regions that have not yet been identified
before. It does not involve the response of the system, but
only the location of data samples over the design space. It
ensures that data samples are spread as evenly as possible.

• Exploitation means that data samples are chosen in re-
gions of the design space that are identified as potentially
interesting. Regions where the response is highly dynamic
require a finer sampling than regions with little variation.

For the exploration criterion, the density of data samples
is quantified by computing a Voronoi tessellation of the data
samples and by calculating the volume of each Voronoi cell
(Sect IV). For the exploitation criterion, the dynamic variation
of the reponse is quantified by computing simple local linear
approximation models that are compared with the true system
response (Sect V). Both criteria are combined to identify
undersampled regions of the design space, and to determine
the optimal location of additional data samples (Sect VI).

IV. EXPLORATION - VORONOI TESSELLATIONS

The density of data samples is assessed by computing a
Voronoi tessellation [20] of the design space and by estimating
the volume of each cell. Cells having a large volume corre-
spond to regions in the design space that are sampled sparsely.
Assume that a discrete and pairwise distinct set of samples
P = {p⃗k}Kk=1 in the design space is given. Then the Voronoi
cell Ck of p⃗k contains all samples in the design space lying
closer to p⃗k than any other sample in P . The complete set
of cells {Ck}Kk=1 tessellates the design space, and is called
the Voronoi tessellation corresponding to P . To compute the
volume of each Voronoi cell, the unbounded cells near the
border of the parameter ranges are bounded. Then, the volume
(Vol) of each cell is estimated by Monte Carlo methods [21].

To assess the density of the data samples around p⃗k, the
following normalized metric V (p⃗k) ∈ [0, 1] is introduced
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V (p⃗k) =
Vol(Ck)

Vol(C1) + ...+Vol(CK)
(1)

Note that V (p⃗k) quantifies the portion of the design space that
is contained within each Voronoi cell Ck of p⃗k.

V. EXPLOITATION - LOCAL LINEAR APPROXIMATIONS

Regions of the design space with a high dynamical behavior
are identified as follows. For each sample p⃗k in P , a suitable
set of V neighbouring data samples N(p⃗k) is chosen.

N(p⃗k) = {p⃗kv}Vv=1 with N(p⃗k) ⊂ P\{p⃗k} (2)

These neighbours are chosen in such a way that each direction
of the design space is covered equally well. Using these
neighbours, the gradient ∇H(g⃗) is estimated from data [22]

∇H(g⃗) =

(
∂H(g⃗)

∂g(1)
,
∂H(g⃗)

∂g(2)
, ...,

∂H(g⃗)

∂g(N)

)
(3)

and leads to the best local linear approximation H̃(g⃗) at p⃗k

H̃(g⃗) = H(p⃗k) + ∇H(g⃗)|pk
(g⃗ − p⃗k) (4)

Note that ∇H(g⃗)|pk
=A−1b is computed by fitting a hyper-

plane through sample p⃗k based on its V neighbours {p⃗kv}Vv=1,
provided that A(i, j) = (p

(j)
ki − p

(j)
k ) and b(i, 1) = H(p⃗ki) for

i = 1, .., V and j = 1, ..., N . Once the gradient is estimated,
the dynamical behavior around sample p⃗k is quantified by
comparing the response of H̃(g⃗) with the true response H(g⃗)
at the neighboring samples p⃗kv . A large deviation metric

Ē(p⃗k) =
V∑

v=1

∣∣∣H̃(p⃗kv)−H(p⃗kv)
∣∣∣ (5)

indicates regions where the data is varying more rapidly. To
obtain a normalized metric E(p⃗k) ∈ [0, 1], one defines

E(p⃗k) =
Ē(p⃗k)

Ē(p⃗1) + ...+ Ē(p⃗K)
(6)

This metric E(p⃗k) quantifies the portion of the dynamic
variation in the response that is located near data sample p⃗k.

VI. SEQUENTIAL DATA SAMPLE SELECTION

The exploration-based metric V (p⃗k) in (1) quantifies data
samples according to the size of their corresponding Voronoi
cell, while the exploitation-based metric E(p⃗k) in (6) quanti-
fies samples according to the local variation of the response.
Both are combined into a global metric that is used for ranking.

G(p⃗k) = (1 + V (p⃗k))(1 + E(p⃗k)) (7)

Data samples associated with large values of (7) are located
in regions which are likely undersampled, whereas the smaller
values of (7) correspond to regions that are sampled suffi-
ciently dense. If the data sample with the maximum value of
(7) is denoted by p⃗m, then the algorithm select an additional
data sample inside the Voronoi cell Cm. Its exact location is
chosen in such a way that the distance from the neighbours
N(p⃗m) is maximized. Once the new data sample is added to
P , the procedure is repeated until the algorithm is terminated.

Fig. 1. 3-D view of the microwave H-Antenna
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Fig. 2. Top view of the microwave H-Antenna
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Fig. 3. Cross-section of the microwave H-Antenna
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Fig. 4. Data sample distribution W -L space (f projected)

VII. EXAMPLE : MICROWAVE H-ANTENNA

This example deals with the parametric macromodeling of
the reflection coefficient S11 of a scalable H-shaped microwave
antenna. Fig. 1 shows a 3-D view of the antenna, which
consists of three layers: a top layer with the H-shaped antenna,
a bottom layer with the feed line and a middle slot layer
with a rectangular aperture that realizes the coupling between
the feed and the antenna. Fig. 2 shows a top view of the
three metal layers along with their respective dimensions. A
cross-section of the structure is shown in Fig. 3, depicting
the vertical position of the metal layers in the dielectric. The
design parameters of the model are the frequency f , the length
L of the antenna and width W of the aperture. The parameter
ranges of interest are set to f ∈ [4.5− 5.5] GHz, L ∈ [3− 9]
mm and W ∈ [0.01 − 6] mm. All data samples are selected
by the sequential sampling algorithm, and simulated with the
full-wave electromagnetic simulator ADS Momentum [23].

The algorithm starts by simulating a limited set of data
samples, and sequentially computes additional data samples
that are scattered in the design space. Based on the combined
metric function (7), the neighbourhood of each data sample is
ranked, and the undersampled regions of the design space are
identified. In successive iteration steps, additional data samples
are selected until the overall response is well resolved. The
distribution of the data samples is shown in Figs. 4-6. (For
ease of representation, samples are visualized by projecting
the remaining parameter on a 2-dimensional parameter space).

To validate the effectiveness of the sample distribution, the
parametrized system response is simulated for a constant value
of L = 6 mm and a varying width W and frequency f . In
terms of the design space, this corresponds to the horizontal
solid line (red) that is shown in Fig. 5. It is seen from
this figure that data samples are distributed more densely at
frequencies higher than -approximately- 4.8 GHz, as marked
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Fig. 5. Data sample distribution L-f space (W projected)

by the vertical solid line (green). The reason becomes clear
when Fig. 7 is considered. The response shows a resonant
behavior that changes as a function of W and involves mostly
these higher frequencies. This is also outlined by the vertical
solid line (green). At the lower frequencies, the response is
smooth and shows little variation, which indeed confirms that
a sparser sampling is sufficient to capture the dynamics.

As an additional test, the system response is simulated for
a constant frequency, e.g. f=5 GHz, and a varying width
W and length L. This corresponds to the vertical solid line
(red) shown in Fig. 6. Here, it is also found that the data
samples are distributed more densely if W has a value larger
than -approximately- 1 mm, as marked by the horizontal solid
line (green). Numerical simulations in Fig. 8 confirm that the
response shows a resonant behavior over this part of W ’s
parameter range. The variation of the response is especially
dynamic inbetween 1 mm and 2 mm, which corresponds to
the dense clustering of the data samples observed in Fig. 6.

These results confirm that the dynamical regions of the
design space are indeed sampled more densely than other
regions where the frequency response shows less variation.

VIII. CONCLUSION

In this paper, an efficient sequential sampling strategy was
proposed for accurate modeling of S-parameter based system
responses. It automatically selects a set of data samples at
scattered locations in the design space, in such a way that the
overall dynamics of the response are captured. The method
can be linked to any full-wave electromagnetic simulator, and
does not require prior knowledge of the device under test. The
new approach is more generic than many existing sampling
strategies, in a sense that the selection of data samples is
completely decoupled from the model type selection (rational
functions, neural networks, ...). Application of the technique to
an antenna example confirms the effectiveness of the approach.
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Fig. 6. Data sample distribution W -f space (L projected)
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