State sequence prediction in imprecise hidden Markov models
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Interpretation of the graphical structure Our imprecise hidden Markov : . .
model (IHMM) represents the following irrelevance assessments: conditional SYST@MS, Ghent UnlverSIty5 Belglum UNIE/;EIIQ\IS.II_TEIT

on its mother variable, the non-parent non-descendants of any variable in the
tree are epistemically irrelevant to this variable and its descendants.

— Independent natural extension

— Marginal extension

Epistemic irrelevance Y is irrelevant to X whenever the belief model (lower E (-1 X:) =8, (-] Xk) @ Pryq (4| Xi)
prevision P) about X does not change when we learn something about Y factorising! = very handy recursive expressions! P (+[Xk—1) = Q) (Ex(-[Xk)| Xi—1)
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Conditioning the joint model 0 [Joint mode Bk("Xk—l)j <: [Ek(’p(k)j <: [Joint model Py | ('|Xk)j
Since we assume that all local lower
probabilities are strictly positive (in Py (Lo, f)
recent work, we dropped this as-
sumption), P;({o1.,}) > 0 and the .U Principle of Optimality Using the recursive expressions = Backward-forward recursion
Generalised Bayes Rule vyields a for the joint model, we can derive an appropriate version We let k run backward from
uniquely coherent value of P, (f|o1.), BI(I[{OI:H}[f—u]) of Bellman’s Principle of Optimality: n to 1. For each k and evgry
which has (this is very useful) the s 20 €0 . A Xe—1 € Zi—1, we determine
- N pt t%/k:n|xk—la Ok:n) = Xk+1:n € OPL Jm//k lzn‘xka Ok+1:n) » :
same sign as P, (I, 1f). By(flown) o ( o ) " (Lt 1) opt (Zk|xk—1,0k:n) With our alter-
' which in turn implies that native optimality criterion. We
Optimality criterion We can express a strict preference > between state opt (ZinlXx 1, 00m) C U 3% D 0Pt ( Lt 1l Okt 1) prove that we can do this effi-
sequences %1, and xp., as follows: £y., = x1., & Py (Lz, y — Iy, 1|01:2) > 0. This | T ey | | ciently by executing the forward

running procedure demonstrated
In the figure below. The se-

Induces a strict partial order >~ on the set of state sequences Z1.,, and we

. A . L . . _ An alternative criterion If we limit ourselves to the pos-
consider a sequence x;., to be optimal when it is undominated, or maximal, in

sible sequences selected by the Principle of Optimality, we

this strict partial order: L L _ quences of are the
can reformulate the optimality criterion as follows:
1 € Opt (Limlotm) < (Vaim € i) Ve elements of . In
Min = OP Lo Pla iz Lan) Sllait 7 Flaa )?k:n = Opt(%m|xk_1,0k;n) e Oc,?pt(ﬁk|xk_1) < OCk(XAk;n). this binary example, X = {O, 1}.
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In an analogous manner we define the optimal subsequences: i=k+1

omax (£, ) > aOpt A ) ?
e (Fhei) 2 067 (K1) Can be calculated ef-

: ficiently by dynamical
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Xen€ L programming.
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Motivation and description No algorithm, however cleverly designed, will Opt (Zk+1:n| 05 0k-+1:0) 0 U, U, U, @
be able to find all maximal sequences efficiently if there are too many. Because
this number of maximal sequences is so important, we study its behaviour /@ (0) (0) (1) (1) (1) (1) @
iIn more detail. We consider a binary, stationary iHMM with precise emission @<
models. The imprecise marginal and transition models are generated b
odels. The imprecise marg tion m g y D0 —0@ 0@ @O —0@—O—0
mixing precise models with a vacuous one, using a mixture coefficient €. For a o/ o/ o/ &/ N
particular observation sequence of length three, we plot the number of maximal
sequences as a function of the transition probabilities p and g. As this number 1 @ @
grows from 1 to 4 the areas go from white to black. @ opt (%c+1:n\ laOk—l—lzn)
I ¢ | 1
€ =2% €E=5%
1 1 Theoretical analysis We prove that the computational complexity is at worst quadratic in the
' length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
A number of maximal sequences (each backward step in the backward-forward loop has a linear
— \ complexity in the number of maximal elements at that stage).
0 | ) 0 ! ) Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
0 p 1 0 p 1 we let it determine the maximal sequences for a random output sequence of length 100. The
IHMM we use to determine the maximal sequences is generated by mixing precise local
Results We see that there are large regions of transition probability space models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
where the number of maximal elements remains fairly small. The plots also sequences and it takes 0.2 seconds to calculate them. If we let € grow to 5%, we get 764
display quite interesting behaviour. If we let the imprecision grow, by using maximal sequences and these can be determined in 32 seconds. This demonstrates that the
higher €, the areas with multiple maximal sequences become larger. They are complexity is indeed linear in the number of solutions and that the algorithm can efficiently

expanded versions of the lines of indifference that occur in the precise case. calculate the maximal sequences even for long output sequences.
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