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Abstract

Event trees are a graphical model of a set of possible
situations and the possible paths going through them,
from the initial situation to the terminal situations. With
each situation, there is associated a local uncertainty
model that represents beliefs about the next situation.
The uncertainty models can be classical, precise prob-
abilities; they can also be of a more general, imprecise
probabilistic type, in which case they can be seen as sets
of classical probabilities (yielding probability intervals).
To work with such event trees, we must combine these
local uncertainty models. We show this can be done
efficiently by back-propagation through the tree, both
for precise and imprecise probabilistic models, and we
illustrate this using an imprecise probabilistic counterpart
of the classical Markov chain. This allows us to perform
a robustness analysis for Markov chains very efficiently.
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Conservative coherent reasoning

Consider two random variables X and Y, a (not necessarily local) conditional model
P(·|Y) for X and the marginal model P for Y. These can be combined to get the
smallest (most conservative) coherent joint model for (X, Y) by means of the Marginal
Extension Theorem.
Theorem 1 (Marginal Extension Theorem) Assume we have:
1. a separately coherent conditional lower prevision P(·|Y),
2. a coherent marginal lower prevision P.
Then the smallest coherent joint lower prevision M is given by

M = P(P(·|Y)).

Implications of the conditional assesments

Due to the particular structure of event trees, the Marginal Extension Theorem can
be reformulated into the computationally attractive Concatenation Formula.
Theorem 2 (Concatenation Formula) Consider any cut U of a situation t. Then for
all gambles f on Ω,

P( f |t) = P(P( f |U)|t).
This theorem tells us that all predictive lower (and upper) previsions can be calculated
using backwards recursion, by starting with the trivial predictive previsions P( f |Ω) =
P( f |Ω) = f for the terminal cut Ω, and using only the local models P(·|t).
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double getLowerPrev is ion ( Gamble , Node ) ;

double getLowerPrev is ionInTree ( Gamble f , Node t )
{

i f t . i sTermina l ( )
return f ( t ) ;

/ / else , we are not i n a te rm ina l node

/ / cons t ruc t new Gamble g
Gamble g ;
for ( i =0 , i < t . getNumberOfChildren ( ) , i ++)
{

Node chi ldNode = t . ge tCh i ld ( i ) ;
g . addValue ( chi ldNode ) = \
getLowerPrev is ionInTree ( f , chi ldNode ) ;

}
/ / c a l c u l a t e the Natura l Extension using g
return getLowerPrev is ion ( g , t ) ;

}

Event trees and conditional independence:
Markov-like behaviour
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Back-propagation in block-diagram form

f , 0, 0, . . .

input gambles
{a, b} → R after

k = 0, 1, 2, . . .
transitions

+ P0 P0( f ), P1( f ), P2( f ), . . .

the global model output:
lower prevision (expectation)

of f after k transitions

Pt

delay
Pt( f |·), Pt(Pt( f |·)|·), . . .0, Pt( f |·), . . .

back-propagation of f after k
transitions (also a gamble)

The block-diagram shows that the computational complexity is linear in the number
of transitions k. Each back-propagation has quadratic complexity in the size of the
possibility space. This holds for both precise and imprecise local models!

An illustrative result

Given {a, b}, note that P({a}) = 1 − P({b}) and P({b}) = 1 − P({a}) for any
imprecise model. Similarly, for any precise model, P({a}) = 1 − P({b}).
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[The data for this plot was generated by a Matlab-program written by a Master’s thesis student,
Stefaan Dhaenens.]
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