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Abstract: For the simulation of one-dimensional (1-D) periodic microstrip structures, aMixed Potential
Integral Equation (MPIE) technique combined with the Method of Moments (MoM) is presented, solving for
the unknown current density flowing within a unit cell of the periodic structure. At the crux of the formalism
are the pertinent 1-D periodic Green’s functions. These are obtained by invoking the Perfectly Matched
Layer (PML)-paradigm. The proposed formalism is illustrated and validatedcomputing the currents flowing
within a representative unit cell of a 1-D periodic antenna array.
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1 Introduction

The study of one-dimensional (1-D) periodic microstrip configurations has been a research topic for
many years. The range of applications comprises antenna arrays, electromagnetic bandgap structures, fre-
quency selective surfaces, leaky-wave antennas, etc. The periodiccharacter of these structure can be ex-
ploited by using the Floquet-Bloch theorem, allowing to restrict the analysis of the complete structure (with
infinite extent) to one representative unit cell.

Often, such simulation methods for 1-D periodic microstrip structures rely on aMixed Potential Integral
Equation (MPIE) combined with the Method of Moments (MoM), solving for the unknown current density
flowing within a unit cell of the periodic structure [1]. This is also the case in this contribution. At the crux of
the formalism are the pertinent 1-D periodic Green’s functions. Unfortunately, these Green’s functions are
not (immediately) available in closed-form. In [1] the 1-D periodic Green’s functions in the spatial domain
are obtained through an efficient sum of inverse Fourier transforms. Here, a different approach is adopted,
based on the Perfectly Matched Layer (PML)-paradigm [2].

In the sequel, all sources and fields are assumed to be time-harmonic with angular frequencyω and
time dependenciesejωt are suppressed. Also, transverse toz restrictions of vectorsv are denoteďv ≡
vxx̂ + vyŷ = −ẑ × [ẑ × v]; herex̂, ŷ, andẑ are unit Cartesian vectors.

2 Description of the formalism

Consider the 1-D periodic microstrip geometry of Fig. 1. A dielectric layer of thicknessd and with
relative permittivityǫr and relative permeabilityµr is placed on a perfect electrically conducting (PEC)
ground plane. A 1-D periodic PEC metallizationM resides at the substrate-air interfacez = d. This
metallizationM is periodic along thex-direction and the period isb. In Fig 1, one unit cell consists of
three square patches. A plane waveEPW(r ≡ xx̂ + yŷ + zẑ) = E0e

jk0z, with wavenumberk0 = ω/c
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and wherec is the speed of light, impinges perpendicularly upon the substrate. This planewave causes an
incident fieldEi(r), which in turn induces unknown current densitiesJ̌(ρ ≡ xx̂ + yŷ + dẑ) flowing on the
metallization.
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Fig. 1: Geometry of a 1-D periodic microstrip array.

Demanding that the total electric field tangential to the metallizationM vanishes, results in the MPIE

Ěi(ρ) = jω

∫∫

Mm

Gper
A (ρ|ρ′)J̌(ρ′) dρ

′ −
1

jω
∇̌

∫∫

Mm

Gper
V (ρ|ρ′)

(

∇̌
′ · J̌(ρ′)

)

dρ
′,

∀ρ ∈ Mm, (1)

with ∇̌ = ∂
∂x

x̂ + ∂
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ŷ and whereMm is that part of the metallization that lies within one unit cellSm
uc =

{ρ ≡ xx̂ + yŷ + dẑ : mb ≤ x < (m + 1)b,−∞ < y < ∞}, m ∈ Z. The integral equation (1) can be
solved by the MoM [3], yielding anN × N linear system inN unknown current expansion coefficients,

V = Z · I. (2)

which is solved using direct or iterative solution schemes.
At the crux of the above formalism are the pertinent 1-D periodic layered medium Green’s func-

tion Gper
A (ρ|ρ′) for the magnetic vector potential andGper

V (ρ|ρ′) for the electric scalar potential. These
Green’s functions are determined by the application of the PML-paradigm, described in [2]. To this end, the
semi-infinite layer of airz > d is closed by a PEC-backed PML, which corresponds to placing a PEC-plate
at a complex distancez = d+D above the microstrip configuration [4]. This formalism yields the following
series expansions for the Green’s functions:
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Here,H(2)
0 (·) is the zeroth-order Hankel function of the second kind and
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with γ0 =
√

k2
0 − β2 andγ1 =

√

k2
0ǫrµr − β2. TheβTE,n andβTM,n represent the propagation constants

of the eigenmodes of the PML-closed waveguide. All these propagation constants have a negative imaginary
part, and hence, only a limited set of modes needs to be retained in the summations. Applying the Poisson
summation to (3) and (4) yields
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The convergence of series (3) and (7) forGper
A (ρ|ρ′), and (4) and (8) forGper

V (ρ|ρ′) is thoroughly discussed
in [2]. Both kinds of series are used in the MPIE-MoM, presented in this contribution. Form = 0, the
series (3) and (4) reduce to the PML-based series for non-periodic microstrip substrates [5] and it is known
that these series become impractical for|ρ − ρ

′| → 0. Alternative series for small|ρ − ρ
′|, using the

Sommerfeld-integral based non-periodic Green’s function whenm = 0, have been proposed in [2]. These
series are also used in this contribution, i.e. for the calculation of the self-patch integrals.

3 Numerical validation

The above described MPIE-MoM is implemented and validated by consideringa representative example.
Consider a microstrip substrate of thicknessd = 3.17 mm, relative permittivityǫr = 11.7, and relative
permeabilityµr = 1. The metallization is the one shown in Fig. 1. One unit cell consist of three patches
of dimension10 mm × 10 mm. The period isb = 40 mm and the spacing between the patches along the
y-direction is 10 mm. The angular frequency isω = 2π10 GHz. The structure is illuminated by a plane
waveEPW(r) = ejk0zŷ. They-oriented current is compared with the solution of a reference program, the
SVD-PML-MLMFA [6]. With the SVD-PML-MLMFA a finite array of7 × 3 patches, i.e. seven unit cells,
is simulated and the current flowing on the central unit cell is used as a reference result. Both currents are
plotted in Fig. 2. Although only seven periods have been used in the reference program, good agreement
can already be observed, as such validating the approach described inthis contribution.

The results are obtained using a Linux-based 64-bit AMD Opteron 270 computer with 8 GB of RAM
running at 2 GHz. A BiCGstab iterative solver was used to solve linear system (2). The SVD-PML-MLFMA
and the iterative solver are set to reach 6 digits of accuracy.

4 Conclusion

Application of the PML-paradigm leads to closed-form 1-D periodic Green’s functions for microstrip
configurations. These Green’s functions form the basis of an MPIE-MoM formalism for the determination
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(a) Results obtained with the 1-D periodic MPIE-MoM as
described in this contribution
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ŷ
|
[d

B
]

(b) Results obtained with the SVD-PML-MLMFA as de-
scribed in [6] (only the three central patches are shown)

Fig. 2: Comparison of they-oriented current flowing within one unit cell of an array of patches.

of the currents flowing on 1-D periodic metallizations residing on a microstrip substrate. The method is
implemented and tested by comparing it with the currents flowing on a finite array of patches, showing good
agreement.
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