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Abstract: For the simulation of one-dimensional (1-D) periodic microstrip structurbBxed Potential
Integral Equation (MPIE) technique combined with the Method of MomentdMs presented, solving for
the unknown current density flowing within a unit cell of the periodic striectéit the crux of the formalism
are the pertinent 1-D periodic Green’s functions. These are obtainéu/bking the Perfectly Matched
Layer (PML)-paradigm. The proposed formalism is illustrated and validaietputing the currents flowing
within a representative unit cell of a 1-D periodic antenna array.
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1 Introduction

The study of one-dimensional (1-D) periodic microstrip configuratiorssiieen a research topic for
many years. The range of applications comprises antenna arraysprelagtretic bandgap structures, fre-
guency selective surfaces, leaky-wave antennas, etc. The pectuatiacter of these structure can be ex-
ploited by using the Floquet-Bloch theorem, allowing to restrict the analysieafdimplete structure (with
infinite extent) to one representative unit cell.

Often, such simulation methods for 1-D periodic microstrip structures rely\ined Potential Integral
Equation (MPIE) combined with the Method of Moments (MoM), solving for theknown current density
flowing within a unit cell of the periodic structure [1]. This is also the caseimdbntribution. At the crux of
the formalism are the pertinent 1-D periodic Green’s functions. Unfatelp these Green’s functions are
not (immediately) available in closed-form. In [1] the 1-D periodic Greemscfions in the spatial domain
are obtained through an efficient sum of inverse Fourier transforraee, ta different approach is adopted,
based on the Perfectly Matched Layer (PML)-paradigm [2].

In the sequel, all sources and fields are assumed to be time-harmonic witlarafigquencyw and
time dependencieg/“! are suppressed. Also, transverse:teestrictions of vectorss are denotedr =
vpX + v,y = —2 x [z X v]; herex, y, andz are unit Cartesian vectors.

2 Description of the formalism

Consider the 1-D periodic microstrip geometry of Fig. 1. A dielectric layer mktressd and with
relative permittivitye, and relative permeability:, is placed on a perfect electrically conducting (PEC)
ground plane. A 1-D periodic PEC metallizatiovt resides at the substrate-air interface= d. This
metallization M is periodic along the:-direction and the period i& In Fig 1, one unit cell consists of
three square patches. A plane walEWY (r = zx + yy + 22) = Ege/*?, with wavenumbek, = w/c
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and where: is the speed of light, impinges perpendicularly upon the substrate. This\pkugecauses an
incident fieldE' (r), which in turn induces unknown current densitlé® = 23 + y¢ + d) flowing on the

metallization.
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Fig. 1. Geometry of a 1-D periodic microstrip array.

Demanding that the total electric field tangential to the metallizatidwanishes, results in the MPIE

B(o)= i [[ G ele)Iw) e~V [[ Gl (9-30)) do
Vp e M™, 1)

with V = a X+ 3 y and whereM™ is that part of the metallization that lies within one unit c&l} =
{p=zx+yy+ dz mb<x<(m+1)b—c0<y<oo}, m € Z. The integral equation (1) can be
solved by the MoM [3], yielding aV x NN linear system inV unknown current expansion coefficients,

V=71 )

which is solved using direct or iterative solution schemes.

At the crux of the above formalism are the pertinent 1-D periodic layerediunme Green’s func-
tion G (p|p’) for the magnetic vector potential artel”(p|p’) for the electric scalar potential. These
Green'’s functions are determined by the application of the PML-paradigsarithed in [2]. To this end, the
semi-infinite layer of aiez > d is closed by a PEC-backed PML, which corresponds to placing a PEE€-pla
at a complex distance= d+ D above the microstrip configuration [4]. This formalism yields the following
series expansions for the Green'’s functions:
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Here,Hé2)(-) is the zeroth-order Hankel function of the second kind and
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with vy = \/k:g — (2 andy; = \/k:gerur — (2. The g, andfrwm,, represent the propagation constants
of the eigenmodes of the PML-closed waveguide. All these propagatistands have a negative imaginary
part, and hence, only a limited set of modes needs to be retained in the summAgphsng the Poisson
summation to (3) and (4) yields
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The convergence of series (3) and (7)) (p|p’), and (4) and (8) fo&}" (p|p’) is thoroughly discussed
in [2]. Both kinds of series are used in the MPIE-MoM, presented in thigrisution. Form = 0, the
series (3) and (4) reduce to the PML-based series for non-periodiostrip substrates [5] and it is known
that these series become impractical for— p’| — 0. Alternative series for smallp — p’|, using the
Sommerfeld-integral based non-periodic Green’s function whes 0, have been proposed in [2]. These
series are also used in this contribution, i.e. for the calculation of the self-pdaegrals.

3 Numerical validation

The above described MPIE-MoM is implemented and validated by considerepgesentative example.
Consider a microstrip substrate of thickness= 3.17 mm, relative permittivitye, = 11.7, and relative
permeability;,,, = 1. The metallization is the one shown in Fig. 1. One unit cell consist of threb@satc
of dimension10 mm x 10 mm. The period i$» = 40 mm and the spacing between the patches along the
y-direction is 10 mm. The angular frequencyis= 2710 GHz. The structure is illuminated by a plane
waveEPW (r) = e/*ozy, They-oriented current is compared with the solution of a reference program, th
SVD-PML-MLMFA [6]. With the SVD-PML-MLMFA a finite array of7 x 3 patches, i.e. seven unit cells,
is simulated and the current flowing on the central unit cell is used asr@mneteresult. Both currents are
plotted in Fig. 2. Although only seven periods have been used in the mefegrogram, good agreement
can already be observed, as such validating the approach describeddantribution.

The results are obtained using a Linux-based 64-bit AMD Opteron 2if(pboter with 8 GB of RAM
running at 2 GHz. A BiCGstab iterative solver was used to solve lineamay&e The SVD-PML-MLFMA
and the iterative solver are set to reach 6 digits of accuracy.

4 Conclusion

Application of the PML-paradigm leads to closed-form 1-D periodic Geefmctions for microstrip
configurations. These Green’s functions form the basis of an MPdEA¥brmalism for the determination
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(a) Results obtained with the 1-D periodic MPIE-MoM as  (b) Results obtained with the SVD-PML-MLMFA as de-
described in this contribution scribed in [6] (only the three central patches are shown)

Fig. 2: Comparison of thg-oriented current flowing within one unit cell of an array of patches.

of the currents flowing on 1-D periodic metallizations residing on a microsttystsate. The method is
implemented and tested by comparing it with the currents flowing on a finite drpatahes, showing good
agreement.
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