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Abstract—Fluid-structure interaction problems can be solved with sepa-
rate solvers for the fluid and the structure. Equilibrium of the forces on the
common boundary of the fluid and the structure is obtained by performing
coupling iterations between the two problems in every time step. This arti-
cle gives insight into the parameters that influence the number of coupling
iterations by means of Fourier analysis on a one-dimensional model of an
elastic artery.
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I. INTRODUCTION

HE simulation of fluid-structure interaction and other cou-

pled problems has gained in interest over the last decade.
This due to the increase in computer power and the maturity
of the codes to simulate fluid or structure problems separately.
Interesting applications are parachute dynamics [1], biomedical
applications [2] and flutter analysis [3], [4].

Two main approaches exist to solve a coupled problem.

« Monolithic approach: a new code that solves both problems
simultaneously is developed.

« Partitioned approach: existing codes for both problems are
coupled by performing iterations in every time step to bring the
forces of both problems on their common boundary into equi-
librium.

The former approach requires no coupling iterations every
time step but the development and maintenance of such a code
is very expensive. A new code has to be created for every com-
bination of physical problems. The equations of two different
physical problems can have diverse mathematical properties so
it can be hard to solve them simultaneously.

The partitioned approach reuses existing codes in various
combinations, but both problems have to be solved multiple
times during the coupling iterations in a time step. However,
a code for a single physical problem can be more optimized and
the partitioned approach makes it easier to use a different math-
ematical formulation for each problem, e.g. finite volumes for
the fluid and finite elements for the structure.

This article focuses on the partitioned approach to fluid-
structure interaction for which several coupling algorithms exist.
These algorithms can be classified according to their need to ac-
cess the source code of the solvers. In this article, only Aitken
underrelaxation and coupling with reduced-order models will be
discussed further. These algorithms treat the codes for the fluid
and the structure as black boxes and thus do not require access
to the source code, enabling the use of commercial codes that
are common in industry.
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However, the coupling iterations in a partitioned calculation
are not automatically stable. The number of iterations must also
be as low as possible to minimize the total calculation time.
Therefore the parameters that influence the stability and the
number of coupling iterations are investigated with Fourier anal-
ysis on a linearized model of a one-dimensional elastic artery.
The results of this analysis are verified with non-linear simula-
tions, which indicate the shortcomings of the current coupling
techniques but also how they can be improved.

II. PROBLEM DESCRIPTION
A. Fluid problem

The unsteady blood flow in an artery is analyzed with a one-
dimensional model. The blood is represented by an incompress-
ible and inviscid fluid and gravity is neglected. The governing
equations are the conservation of mass and momentum which
can be written in conservative form as
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with a the cross sectional area of the artery, u the velocity along

the axis of the artery and % the time derivative. z is the spatial
coordinate, p is the density of the blood, p* the pressure and
p = p*/p the kinematic pressure.

The Navier-Stokes equations are discretized on a one-
dimensional equidistant mesh with NV cells and mesh size Az.
The time discretization scheme is implicit Euler and the time
step is indicated with A¢. Solution of the fluid problem can be
summarized as Y = F(X), with X a list with the coordinates
of the points on the fluid-structure interface and Y a list with the
components of the fluid load (pressure and viscous force) on the
interface.

B. Structure problem

The behaviour of the elastic artery wall is described by a
Hookean constitutive relation without mass, as the inertia of the
artery wall is neglected with regards to that of the fluid. An ax-
isymmetric model is used in coordinate system (zx,r,¢), with r
the inner radius of the artery and ¢ the angle in the cross sec-
tional plane. 044 is approximated as
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with E Young’s modulus and r( the radius where o = 0. This
model allows only radial motion of the nodes.
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Under the assumption that only pressure forces act on the
boundary, the force balance reads p*r = og4h with h the thick-
ness of the artery wall. Equation (2) and the definition of the
kinematic pressure are substituted in the force balance, which

can be rewritten as
2
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by using @ = 77?2 and by introducing the Moens-Korteweg wave
speed, 2, = 2. Similar to the fluid problem, X = S(Y)
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represents the solution of the structure problem.

III. COUPLING TECHNIQUES
A. Coupling iterations

Coupling iterations between the fluid and structure in a time
step can be performed by the following scheme where a sub-
script k indicates the coupling iteration.

1. Calculate the fluid load on the interface by solving the fluid
problem, Y3, = F(Xy).

2. Calculate the position of the interface by solving the structure
problem, X1 = S(Y%)

3. Increase k and go to 1 if the L1-norm of X}, — X1 is bigger
than the convergence criterium.

B. Aitken underrelaxation

Aitken’s method [5] applies a variable underrelaxation factor
on the difference between the current interface position (Xj41)
and the previous one (X}) after step 2. This factor is calculated
from the differences in the position of the interface during the
last two coupling iterations.

C. Reduced-order models

After the solution of the fluid or structure problem, an input
and output of that code is known. With this new input/output
pair and all the ones from the preceding iterations, a linear
reduced-order model of the solver is created which is an ap-
proximation for the real solver. The coupled solution of those
simplified models is calculated and given to the other solver [2].
This procedure is iterated until convergence is obtained.

IV. FOURIER STABILITY ANALYSIS

By linearizing the discretized fluid and structure equations,
one can perform a Fourier stability analysis of the error between
the interface’s current position and load and the exact solution in
a coupling iteration. The amplification factor of the error must
be smaller than one for all spatial frequencies for an iteration
scheme to be stable. The influence of the structure’s stiffness
and the time step on the stability is shown in Figure 1 for cou-
pling iterations without underrelaxation or reduced-order mod-
els. Perturbations with a low spatial frequency cause instability
and a decreasing stiffness or decreasing time step further desta-
bilizes the coupling iterations. A smaller time step or lower
structural stiffness thus increase the number of coupling itera-
tions. The difficulties arising from the decrease in time step is
highly unwanted, but this result gives a theoretical basis for the
findings in previous work [2]. None of the simulations shown
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Fig. 1. Error amplification from Fourier analysis (a) for different values of the
structural stiffness and (b) for different values of the time step.

in Figure 1 is stable without underrelaxation as the error am-
plification is bigger than one for the lower spatial frequencies.

V. NON-LINEAR RESULTS

The configurations studied with the Fourier analysis have
been simulated with the non-linear fluid and structure equations
using Aitken underrelaxation and coupling with reduced-order
models. Both techniques require more coupling iterations if the
time step or the structural stiffness decreases, which extends the
conclusions from the Fourier analysis to non-linear problems.
Coupling with reduced-order models outperforms Aitken under-
relaxation in every configuration.

VI. CONCLUSIONS

The partitioned approach to fluid-structure interaction enables
the reuse of existing codes but requires a coupling algorithm to
obtain force equilibrium on the fluid-structure interface. If the
mass of the structure is small with respect to the mass of the
fluid then more coupling iterations are required when the time
step or structural stiffness decreases. New coupling techniques
without this unwanted behaviour should be developed by using
the information of the previous time steps.
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