
Physiological boundary conditions for flow calcu-
lations in 3D models of the human vasculature 

Thomas De Schryver 
Supervisors: Patrick Segers, Jan Vierendeels 

I. INTRODUCTION 
Among other applications, numerical 

simulation of blood flow can be used in pre-
operative planning of vascular surgery and 
predict its outcome [1]. This requires the 
implementation of the necessary tools to per-
form these types of simulations based on 
patient-specific data, attainable during pre-
operative clinical examination. Usually, only 
a segment of the vascular tree is simulated to 
make the computation feasible. In doing so, 
the in- and outlets of this segment need 
appropriate boundary conditions (BCs) which 
describe pressures and flows arising from the 
interaction between the studied segment and 
the rest of the cardiovascular system. The 
boundary conditions should be of lower order 
complexity with a moderate amount of 
parameters easily tunable to patient-specific 
data, and foremost independent of any 
geometrical changes to the computational 
domain. In this paper, we describe an 
impedance BC for the distal vasculature 
(outlets) [2] and a lumped parameter model of 
the heart (inlet) [3], implemented within a 
convergence enhancing framework that 
couples them to our numerical flow solver 
(Fluent 6.3, Ansys, UK).  

II. METHODS 

A. Impedance Boundary Condition 
The vascular network distal to each outlet 

can be modeled as a linear dynamic system 
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wherein pressure, p, is a result of convolving 
the input flow with this system’s impulse 
response, as dictated by eq. (1): 
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 T being the duration of a cardiac cycle, q the 
flow, and z the impulse response function 
(e.g. Figure 1). The impulse response is 
primarily determined by the vascular morpho-
logy distal to the outlets. 

 
Figure 1. Impulse response at the abdominal 

aorta, just proximal to the renal artery 
branching. 

B. Lumped parameter heart model 
The human left ventricle can be modeled by 

the electrical circuit analogy depicted in 
Figure 2. The time varying elastance, E(t), 
represents the contractile state of the heart 
muscle. Interestingly the elastance normalized 
in magnitude and time is patient independent. 
As a result, any elastance curve is fully 
defined by the patient’s heart rate, the peak 
elastance and the timing of peak elastance.  

The heart valves are modeled as resistances 
that depend on the overlying pressure drop 
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(δP). When δP is negative, the resistance is 
maximal and acts like a diode.  

 
Figure 2. Lumped parameter model of the 
heart: (1) left atrium, (2) left ventricle, (3) 
mitral valve, (4) aortic valve (see also [3]) 

C. Coupling complex BCs to Fluent 
Ideally one would solve for the flow field 

together with the BCs discussed above in an 
implicit manner. However, since Fluent is 
used as a blackbox solver, the BC-equations 
can not be added implicitly and the Jacobian 
(J) that links pressure changes (Δp) at the 
boundaries to flow changes (Δq) at the 
outlets, has to be estimated at the beginning of 
each timestep. For the case of two outlets 
(indices 1 and 2) and one inlet (index 3), the 
Jacobian equation writes: 
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After perturbing the outlet pressures and 
calculating the resulting flow changes, the 
Jacobian can be estimated through finite dif-
ferences. Summing the elements on each row 
of J should give zero, since q does not change 
when the boundary pressures are perturbed 
uniformly. As a result, the inlet pressure does 
not need to be perturbed to estimate J.  

The Jacobian-equation (eq. (2)) and the 
BC-equations form a closed system of non-
linear equations that can be solved with a 
Newton method. This is repeated every time 
step. 

III. EXAMPLE: A PATIENT-SPECIFIC AORTA 
The BCs discussed here were applied to a 

patient-specific aortic geometry segmented 
from MRI scanning data (Figure 3). The aorta 
was connected to a model of the heart at the 
inlet (A), while pressure and flow at the 

outlets (B-E) were linked by different impulse 
responses similar to the one depicted in 
Figure 1. The insets in Figure 3 show calcu-
lated pressure and flow waves at each outlet. 

 

 
Figure 3. Pressure and flow in a patient-
specific aorta: (A) Ascending Aorta, (B) 

Brachio-Cephalic A., (C) Left Carotid A., (D) 
Left Subclavian A., (E) Abdominal Aorta. 

IV. CONCLUSIONS 
By using a stable and robust convergence 

scheme we were able to implement complex, 
physiological BCs for calculating 3D flow in 
a patient-specific geometry, giving realistic 
(physiological) pressure and flow waves at all 
of the boundaries (A-E). 
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