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Abstract We present a Regge-inspired effective-Lagrangian framework for charged-kaon photoproduction from
the deuteron. Quasi-free kaon production is investigated using the Regge-plus-resonance elementary operator
within the non-relativistic plane-wave impulse approximation. The Regge-plus-resonance model was developed
to describe photoinduced and electroinduced kaon production off protons and can be extended to strangeness
production off neutrons. The non-resonant contributions to the amplitude are modelled in terms of K+(494) and
K∗+(892) Regge-trajectory exchange in the t-channel. This amplitude is supplemented with a selection of s-channel
resonance-exchange diagrams. We investigate several sources of theoretical uncertainties on the semi-inclusive
charged-kaon production cross section. The experimental error bars on the photocoupling helicity amplitudes turn
out to put severe limits on the predictive power when considering quasi-free kaon production on a bound neutron.

1 Introduction

The electromagnetic (EM) production of pseudoscalar me-
sons is the subject of intense experimental and theoretical
research for it gives access to the properties of the nucleon’s
excited states. As such, these reactions provide invaluable
input to our attempts to understand the strong interaction
in the confinement regime. Associated strangeness produc-
tion yields particularly interesting information since it in-
volves the rearrangement of a quark-antiquark pair in the
nucleon’s sea. In order to extract the masses, widths and
transition form factors of nucleon and delta resonances, dy-
namical reaction models are required. In spite of the exten-
sive p(γ(∗),K)Y data set obtained in recent years, different
analyses have not led to an unambiguous outcome.

Disentangling the multitude of overlapping resonances
has proven to be challenging. Moreover, the smooth energy
dependence of the measured observables hints at a domi-
nant role for the background, i.e. non-resonant, processes.
Hence, the latter are a critical ingredient of the reaction
dynamics. The Regge-plus-resonance approach to kaon pro-
duction seeks to decouple the determination of the coupling
constants for the background and the resonant diagrams. Us-
ing high-energy data, we fix the non-resonant contributions
to the reaction amplitude, modelled in terms of t-channel
Regge-trajectory exchanges. In the resonance region, this
amplitude is augmented with resonance-exchange diagrams
in the s-channel. In this way, we arrive at a fair and econom-
ical description of EM kaon production data from threshold
up to Elab

γ = 16 GeV [1,2,3,4].
While most research has hitherto focussed on kaon pro-

duction off free protons, it pays to consider the same re-
action on more complex targets, such as the deuteron. We
see three major reasons to extend the Regge-plus-resonance
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formalism to quasi-free production on the deuteron. First,
owing to the deuteron’s weak binding, it is ideally suited as
an effective neutron target. Therefore, kaon production on
the deuteron gives access to the elementary n(γ,K)Y reac-
tion process. Second, by comparing reactions off free and
bound protons, our understanding of nuclear-medium ef-
fects is put to the test. Finally, when focussing on kinematic
regions where one expects important contributions from
hyperons rescattering off the spectator nucleon, allows one
to gain access to the elusive hyperon-nucleon interaction.

In this contribution, we present predictions for the quasi-
free production of charged kaons on the deuteron. In the
next section, we recapitulate the Regge-plus-resonance
model for kaon photoproduction on both proton and neutron
targets. Subsequently, we outline how this elementary oper-
ator can be embedded in the nuclear medium. Sect. 4 fea-
tures a selection of results for the semi-inclusive quasi-free
differential cross section. Finally, we state our conclusions.

2 Production on the free nucleon

It is customary to study kaon photoproduction within an
effective-Lagrangian model at tree-level. These analyses
either focus exclusively on the kaon production channel
or include it in a full coupled-channels approach. In any
case, the parametrisation of the non-resonant contributions
to the production amplitude is a crucial and troublesome
ingredient of the reaction dynamics. The regularisation of
the Born terms with ad hoc form factors and the subse-
quent requirement to restore gauge invariance implies an
important model dependence for the extracted resonance
information [5,6]. This prompts for an independent deter-
mination of the resonant and non-resonant contributions to
the reaction amplitude.
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At sufficiently high energies, hadrons are no longer
the appropriate degrees of freedom and the isobar model
breaks down. Through Regge phenomenology, however, we
are able to hold on to the effective-Lagrangian approach
whilst ensuring the correct high-energy behaviour. Guidal
et al. [7,8] demonstrated that the available high-energy kaon
photoproduction data can be adequately understood by mod-
elling the reaction via the exchange of linear K+(494) and
K∗+(892) Regge trajectories in the t-channel. For each tra-
jectory’s contribution we determine the Feynman diagram
for the exchange of the trajectory’s first materialisation and
subsequently replace the standard Feynman (t − m2

K(∗)+ )−1

propagator by the corresponding Regge propagator

P
K+(494)
Regge =

(
s
s0

)αK+ (t)

{
1

e−iπαK+ (t)

}
sin

(
παK+ (t)

) πα′K+

Γ
(
1 + αK+ (t)

) ,(1a)

P
K∗+(892)
Regge =

(
s
s0

)αK∗+ (t)−1

{
1

e−iπαK∗+ (t)

}
sin

(
παK∗+ (t)

) πα′K∗+

Γ
(
αK∗+ (t)

) , (1b)

with s0 = 1 GeV2, αK+ (t) = 0.70 (t − m2
K+ ) and αK∗+ (t) =

1+0.85 (t−m2
K∗+ ), when t and m2

K(∗)+ are expressed in units of
GeV2. As can be appreciated from Eq. (1), a phase option,
either constant (1) or rotating (e−iπα(t)), remains for the
Regge propagators. A rotating phase for both trajectories
is best suited to describe Λ production [1], while the KΣ
channel prefers a rotating (constant) phase for the K+(494)
(K∗+(892)) trajectory [2].

A crucial constraint for the kaon-production amplitude
is gauge invariance. It is well-known that the t-channel
Born diagram by itself does not conserve electric charge. In
Ref. [8], an elegant recipe to correct for this was outlined.
Adding the electric part of a Reggeized s-channel Born
diagram ensures that the amplitude is gauge invariant.

The Regge model’s amplitude can be interpreted as
the asymptotic form of the full amplitude for large s and
small |t|. Owing to the t-channel dominance and the ab-
sence of a prevailing resonance, the Reggeized background
can account for the gross features of the kaon-production
data within the resonance region [2,9]. Near threshold, the
energy dependence of the measured differential cross sec-
tions exhibits structure which hints at the presence of reso-
nances. These are incorporated by supplementing the back-
ground with a number of resonant s-channel diagrams using
standard tree-level Feynman diagrams. This approach was
coined Regge-plus-resonance (RPR) and results in the fol-
lowing structure for the elementary production operator:

Ĵelem
(
γp→ K+Y

)
=

ĴK+(494)
Regge + ĴK∗+(892)

Regge + ĴBorn-s,elec
Feyn × P

K+(494)
Regge ×

(
t − m2

K

)
+

∑
N∗

ĴN∗
Feyn +

∑
∆∗

Ĵ∆
∗

Feyn . (2)

In the K+Λ and K+Σ0 production channels, sufficient
data is available to constrain the free parameters of the
production operator. The third possible final state containing

Table 1. The ratio of the EM coupling constants to proton and
neutron for selected nucleon resonances obtained with Eq. (4) or
Eq. (5). The listed values are obtained using photocoupling helicity
amplitudes from SAID analysis SM95 [10]. No experimental
information exists for the N(1900)P13, therefore we consider a
broad range.

Resonance κN∗n
κN∗ p

κ
(1)
N∗n

κ
(1)
N∗ p

κ
(2)
N∗n

κ
(2)
N∗ p

N(1650)S 11 −0.22± 0.07 − −

N(1710)P11 −0.29± 2.23 − −

N(1720)P13 − −0.38± 2.00 −0.50± 1.08
N(1900)P13 − 0.00± 2.00 0.00± 2.00

a charged kaon (K+Σ−), on the other hand, suffers from a
lack of data and extrapolations are unavoidable. Within the
RPR model the n(γ,K+)Σ− and p(γ,K+)Σ0 reactions can
be related to each other. As was outlined in Ref. [4], it
suffices to convert the coupling constants which feature in
the interaction Lagrangians. In the strong interaction vertex,
we assume SU(2) isospin symmetry to be exact. Taking
the hadronic couplings proportional to the Clebsch-Gordan
coefficients, we obtain the following relations

gK(∗)+Σ−n =
√

2 gK(∗)+Σ0 p , (3a)

gK(∗)+Σ−N∗0 =
√

2 gK(∗)+Σ0N∗+ . (3b)

In the Regge model, the coupling constants at the EM
vertex do not change. The procedure to restore gauge in-
variance, however, is slightly altered. This time we need
to include the electric part of a Reggeized u-channel Born
diagram. Converting the EM coupling constant of the reso-
nant contributions requires knowledge of the photocoupling
helicity amplitudesAN

J , which are extracted from pion pro-
duction reactions, amongst others. It can be shown that the
ratio of a resonance’s EM couplings constants to neutron
and proton is given by

κN∗n

κN∗p
=
An

1/2

A
p
1/2

, (4)

or

κ(1)
N∗n

κ(1)
N∗p

=

√
3An

1/2 ±A
n
3/2

√
3Ap

1/2 ±A
p
3/2

(5a)

κ(2)
N∗n

κ(2)
N∗p

=

√
3An

1/2 −
mp

mN∗
An

3/2
√

3Ap
1/2 −

mp

mN∗
A

p
3/2

. (5b)

for spin-1/2 or spin-3/2 resonances respectively [4]. In
Table 1 we list the conversion factors for the resonances
relevant to our model employing the helicity amplitudes
extracted in the SAID analysis SM95 [10]. It is immediately
clear that the ratios have considerable error bars. Moreover,
no information is available for the N(1900)P13 resonance.
Therefore, we allow the ratios of its magnetic transition
moments, κ(1,2)

N∗n /κ
(1,2)
N∗p , to vary between −2 and +2.

In Refs. [1,2], we presented results for the p(γ,K+)Λ
and p(γ,K+)Σ0 reactions. The free parameters of the Regge
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model were fitted to the available high-energy data. Next,
the coupling constants of the resonance-exchange diagrams
were determined by optimizing the model against photo-
production data in the resonance region (Elab

γ ≤ 2.5 GeV),
while the parameters of the background contributions are
frozen. The resulting models allow for a good description
of the available data and exhibit robustness when compared
to newly measured polarisation observables [11,12]. In ad-
dition, the RPR model has demonstrated its high predictive
power through its nice agreement with electroproduction
data [3]. When the RPR model was compared to the limited
n(γ,K+)Σ− data set, it was observed that the Regge model
produces satisfactory predictions. The predictive power of
the full RPR model, on the other hand, is limited by the
experimental error bars of the helicity amplitudes [4].

3 Quasi-free production on the deuteron

In the previous section, we have presented the elemen-
tary charged-kaon production operator in the Regge-plus-
resonance approach. Now, we will sketch the formalism
to embed this operator in the deuteron. If one assumes the
conventions of Peskin and Schroeder [13], the expression
for the 2H(γ,KY)N cross section is given by

dσ =
1

|vγ − vD|

1
2Eγ2ED

d3pK

2EK(2π)3

d3pY

2EY (2π)3

d3pN

2EN(2π)3

×(2π)4δ(4)(pγ + pD − pK − pY − pN)

×
1
6

∑
2
∣∣∣〈pKpYpNλKλYλN | ελγ · Ĵelem |pDλD〉

∣∣∣2 . (6)

Here ελγ is the photon’s polarisation vector and pγ, pD, pK ,
pY and pN are the momenta of the photon, deuteron, kaon,
hyperon and nucleon respectively. Their spin projections are
denoted by λγ, λD, λY and λN , and 1/6

∑
implies a summa-

tion (averaging) over the spins of the initial (final) state par-
ticles. To obtain the semi-inclusive kaon-production cross
section, we integrate over the four-momenta of the hyperon
and nucleon in their centre-of-mass frame. All other quanti-
ties are evaluated in the laboratory frame. We have

d3σ

dpKdΩK
=

∫
dΩ∗Y

1
32(2π)5

|p∗Y ||pK |
2

MDElab
γ EKWYN

(7)

×
1
6

∑
2
∣∣∣〈pKpYpNλKλYλN | ελγ · Ĵelem |pDλD〉

∣∣∣2 ,
with WYN the invariant mass of the hyperon-nucleon system.

When evaluating the matrix element in Eqs. (6) and (7),
we invoke the impulse approximation (IA), which allows to
write the interaction Hamiltonian as an incoherent sum of
one-body current operators. Our notation tacitly implies that
the elementary operator (see Eq. (2)) only acts on particle
‘1’ inside the deuteron. Were Ĵelem to act on particle ‘2’, the
amplitude would be the same. Therefore, we multiply the
matrix element by two.

The kinematics and the elementary operator are treated
in a fully relativistic manner. It has been shown that the
use of a relativistic wave function has negligible effects on

the quasi-free cross section as long as the momentum of
the final-state nucleon is small compared to its mass [14].
Therefore, we have opted for a non-relativistic deuteron
wave function. The deuteron state can be decomposed as

|pDλD〉 =

√
2ED (2π)3

∫
d3p′N

√
EN

E′N
δ(3) (pD − pN − p′N

)
×

1
√

2

(∣∣∣mI
1 = 1

2 ,m
I
2 = − 1

2

〉
−

∣∣∣mI
1 = − 1

2 ,m
I
2 = 1

2

〉)
×

∑
λ′N

∑
mS

∑
L=0,2

∑
mL

∣∣∣p′Nλ′N〉
iLuL(|p′N |)YLmL

(
p̂′N

)
×

〈
1
2λN ; 1

2λ
′
N

∣∣∣ 1
2

1
2 , 1mS

〉
〈LmL; 1mS | L1, 1λD〉 , (8)

with p′N (λ′N) the four-momentum (spin projection) of the
struck nucleon inside the deuteron. The YLmL (θ, φ) are spher-
ical harmonics and uL(p) are the s-wave and d-wave com-
ponents of the non-relativistic deuteron wave function. For
completeness, we have also written down the isospin com-
ponent of the deuteron state.

Because of the Dirac delta function in Eq. (8), the struck
nucleon is never on its mass shell, i.e. p

′2
N < m2. One can

deal with this by either using p
′2
N as an effective mass in

the elementary operator or by forcing the struck nucleon on
its mass shell and thus violating conservation of energy in
the Dnp-vertex. In the forthcoming section, the influence
of these different prescriptions will be investigated.

4 Results

Within the plane-wave impulse approximation, the photo-
production of a charged kaon from a deuteron target can
proceed in three different elementary ways. For two of these,
2H(γ,K+)Λn and 2H(γ,K+)Σ0n, the incoming photon inter-
acts with a bound proton inside the nucleus. The elementary
operators for these reactions are well constrained by the
existing data. This is in sharp contrast with the case of
neutral-kaon production, where no experimental informa-
tion to fix the RPR model is available. For this reason, we
will only present results for the charged-kaon production
cross section.

In Fig. 1, the threefold differential cross section is shown
as a function of the kaon’s momentum and scattering angle
in the laboratory frame. These results are obtained with
the RPR current operator and use the struck nucleon’s
four-momentum squared p

′2
N as an effective mass. The em-

ployed deuteron wave function is generated by the charge-
dependent Bonn potential (CD-Bonn) [15]. The shape of
the semi-inclusive cross section is mainly determined by the
deuteron’s momentum distribution, which peaks at vanish-
ing relative momentum. The cross section is largest when
kaons are created along the direction of the incoming pho-
ton. At all but the lowest photon energy, the cross section
consists of two modi. The one at the highest kaon momenta
corresponds to Λ production, the second to Σ0/Σ− produc-
tion. As the photon energy increases, the gap between both
ridges becomes smaller and disappears at Elab

γ ≈ 2 GeV.
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Figure 1. The semi-inclusive 2H(γ,K+)YN differential cross section using the full RPR operator as a function of the kaon mo-
mentum pK and scattering angle θK in the laboratory system at six different photon energies (from top-left to bottom-right Elab

γ =

900, 1100, 1300, 1700, 2100 and 2500 MeV).

The semi-inclusive cross section at forward kaon scat-
tering angle and at Elab

γ = 1300 MeV is shown in Fig. 2,
using the current operator of both the Regge as well as
the more complete RPR model. The shape and size of the
semi-inclusive cross section are compatible with the results
presented in Fig. 6 of Ref. [16], even though a different
wave function and elementary operator were used. Inter-
estingly, the resonant contributions to the production op-
erator add strength to the Σ peak, whereas they produce
destructive interference with the non-resonant diagrams in
the Λ-production peak.

Several sources of uncertainties may affect the calcu-
lated cross sections. Besides the CD-Bonn wave functions,
we have also applied wave functions obtained with the
Paris [17] and Nijmegen-III [18] potentials. This does not
have any impact on the results. Likewise, the two above-
mentioned prescriptions to deal with the off-shell character
of the nucleons provide similar results. This can be un-
derstood by realising that the major fraction of the semi-
inclusive cross section’s strength stems from those regions
in phase space where the struck nucleon is marginally off
its mass shell.
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In Ref. [4] it became apparent to what extent the ex-
perimental errors on the photocoupling helicity amplitudes
of established resonances affect the predictability of the
n(γ,K+)Σ− cross section. In Fig. 2, the effect of these un-
certainties is indicated by the shaded area. The induced
deviations are important. In the Σ-production peak, varia-
tions of the order of two are possible in the predicted cross
sections. Measuring the threefold differential cross section,
even with limited accuracy, would therefore allow to put
stringent constraints on the resonances’ helicity amplitudes.
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Figure 2. The threefold differential 2H(γ,K+)YN cross section as
a function of the kaon momentum pK at forward-scattering angle
θK and photon energy Elab

γ = 1300 MeV. The dashed curve shows
the contribution of the Reggeized background, whereas the solid
curve also includes the s-channel resonant contributions of the
full RPR amplitude. The shaded area takes the uncertainties of the
adopted helicity amplitudes into account. These uncertainties are
listed in Table 1.

5 Conclusions

We have presented results for quasi-free charged-kaon pho-
toproduction from the deuteron within a non-relativistic
plane-wave impulse approximation. For the elementary pro-
cess, we employ the Regge-plus-resonance model, which
has been optimised against recent photoproduction data. We
have shown that the adopted deuteron wave function and
the prescription to treat the off-shell nature of the struck nu-
cleon have an insignificant effect on the calculated threefold
differential cross sections. As in the elementary n(γ,K+)Σ−
channel, the experimental errors on the resonances’ helicity
amplitudes are the most important source of uncertainties.
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