
Optimisation under uncertainty
applied to a bridge collision problem

K. Shariatmadar1, R. Andrei2, G. de Cooman1, P. Baekeland3, E. Quaeghebeur1,4, E. Kerre2

1 Ghent University, SYSTeMS Research Group
Technologiepark-Zwijnaarde 914, 9052 Zwijnaarde, Belgium
e-mail: {Keivan.Shariatmadar,Gert.deCooman,Erik.Quaeghebeur}@UGent.be

2 Ghent University, FUM Research Group
Krijgslaan 281 S9, 9000 Gent, Belgium
e-mail: {Raluca.Andrei,Etienne.Kerre}@UGent.be

3 TECHNUM-TRACTEBEL ENGINEERING
Coveliersstraat 15, 2600 Antwerpen, Belgium
e-mail: Pieter.Baekeland@technum-tractebel.be

4 Carnegie Mellon University, Department of Philosophy
Baker Hall 135, Pittsburgh, PA 15213-3890, United States
e-mail: ErikQ@andrew.cmu.edu

Abstract
We consider the problem of modelling the load on a bridge pillar when hit by a vehicle. This load depends on
a number of uncertain variables, such as the mass of the vehicle and its speed on impact. The objective of
our study is to analyse their effect on the load. More specifically, we are interested in finding the minimum
distance of the pillar to the side of the road passing under the bridge such that a given constraint on the
load is satisfied in 99% of impact cases, i.e., such that the probability of satisfying the constraint is 0.99. In
addition, we look for solutions to the following optimisation problem: find the distance that minimises a given
cost function while still satisfying a given constraint on the load. This optimisation problem under uncertain
constraints is not a well-posed problem, so we turn it into a decision problem under uncertainty. For both
problems, we consider two typical cases. In the first, so-called precise-probability case, all uncertain variables
involved are modelled using probability distributions, and in the second, so-called imprecise-probability case,
the uncertainty for at least some of the variables (in casu the mass) is modelled by an interval of possible
values, which is a special imprecise-probabilistic model. In the first case, we compute the joint distribution
using simple Monte Carlo simulation, and in the second case, we combine Monte Carlo simulation with newly
developed techniques in the field of imprecise probabilities. For the optimisation problem with uncertain
constraints, this leads to two distinct approaches with different optimality criteria, namely maximality and
maximinity, which we discuss and compare.

1 Introduction

When designing a bridge one should take into account accidental forces. The pillar can for instance be hit by a
vehicle, resulting in damage to the bridge and/or loss of human life. Studying the effect of vehicle impact on
the integrity of a bridge is a complex issue, involving dynamic effects, non-linear material behaviour, stiffness
of bridge and vehicle, the presence of road restraining systems, shape and roughness of the terrain, mass and
speed of the vehicle, impact angle, deceleration, etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55822409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


One problem we describe in this paper consists in finding a smallest distance d, from the side of the road
passing under the bridge to its pillars, such that in case of collision, the impact force Fveh is smaller than a
design force Fdes in 99% of the cases. In a second problem, a cost function C(d) for building the bridge is
minimised. In combining both problems, we are looking for the cost-optimal distance d between the vehicle
and bridge pillar that also ensures structural integrity, or equivalently, which satisfies the condition on the
design force.

The paper is organised as follows. In Section 2 we give a detailed description of the problem, outlining four
different interesting cases, depending on the type of vehicle colliding with the bridge pillar. Section 3 provides
a short overview of uncertainty models and optimisation criteria under uncertainty. Since interval uncertainties
appear in the parameters of the vehicle in two of the four cases considered, we need to treat it separately and
use techniques from imprecise-probability theory in order to give the solution. We subsequently split our main
developments into two sections: in Section 4 we solve the collision problem in the precise-probability case
where all uncertainty models are probabilistic, and in Section 5 we address the imprecise-probability case
where some parameters have interval uncertainty. We present some conclusions in Section 6.

2 Problem description

2.1 Constrained optimisation under uncertainty

We use the approach from earlier work [3], where some of us solve the following general constrained
optimisation problem with uncertainty on the constraint:

maximise f (x) over all x ∈X such that xRY ,

where f is a bounded real-valued function defined on a set X , Y is a random variable taking values in a
set Y , and R is a relation on X ×Y . First, we model the bridge collision problem as such a constrained
optimisation problem under uncertainty. Next, by considering closely all types of uncertainties and conditions,
we apply the methodology developed in our earlier work [3] to find the solutions to this problem, which are
presented in subsequent sections.

2.2 Vehicle–pillar collision problem

We consider a situation in which a vehicle collides with the pillar of a bridge over the road that the vehicle
was travelling on. See Figure 1 for a schematic drawing of the accident situation and the type of bridge we
consider in this paper.
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Figure 1: Schematic drawing of the vehicle–pillar collision and the bridge type considered



The first problem we wish to solve is the following [6]: find the smallest distance d from the side of the
carriageway to the bridge pillar such that whenever a collision occurs, the probability that the impact force
Fveh stays below a given safety threshold still exceeds 99%:

P
(
Fveh cosα ≤ sFdesx and Fveh sinα ≤ sFdesy

)
≥ 0.99. (1)

Apart from d, the impact force depends on the mass m of the vehicle, its stiffness k, the speed v0 at which it
leaves the carriageway, its average deceleration a while off the carriageway, and—via the distance r traveled
between leaving the carriageway and hitting the pillar—on the angle α at which the vehicle leaves the
carriageway:

Fveh =
√

mk
(
v2

0−2ar
)
=
√

mk
(
v2

0−2ad/sinα
)
. (2)

A safety threshold is specified separately for, respectively, the longitudinal and perpendicular components of
the impact force. Each is the product of a force that the pillar is designed to withstand in that direction, Fdesx
and Fdesy respectively, and a factor s that expresses the relation to the corresponding dynamic impact forces.

As a second problem, we consider minimising the cost, expressed in euros, for building a single-span bridge:

C(d) = 45B
(
(L1 +2d)2 +L2

2
)
. (3)

In this expression, B is the width of the bridge, L1 is the carriageway width, so L1 + 2d is the main span,
and L2 is the span next to the abutments. Therefore, modelling the bridge collision problem as a constrained
optimisation problem leads to:

maximise f (d) over all d ∈ R+ subject to dRY , (4)

where Y := (m,v0,a,α) is a quadruple of uncertain variables, R+ is the set of all non-negative real numbers,
the relation R is defined by

dRY ⇔ Fveh cosα ≤ sFdesx and Fveh sinα ≤ sFdesy (5)

and the objective function is
f (d) =−45B

(
(L1 +2d)2 +L2

2
)
. (6)

In what follows, we consider four categories, based on the type of vehicle and the speed when leaving the
carriageway. The information we have [6] about the parameters appearing in this problem can be a probability
distribution, or given by an interval of reasonable values, or by such an interval and additionally a probability
distribution. We use the normal distribution N (µ,σ), the lognormal distribution L (µ,σ), and the Rayleigh
distribution R(µ,σ), each of which is characterised by a mean µ and standard deviation σ and must be used
truncated to within the given reasonable interval.

The available information about some parameters is constant over the vehicle–speed categories: k = 300kN/m,
a ∈ [1,5]m/s2 and distributed according to L (4,1.3), s = 1.4, B = 14m, L1 = 20m, and L2 = 15m. The
different vehicle–speed categories and the parameters along with the information varying over them is given
in Table 1. It is assumed that within each category, the component random variables v0, m, a and α are
independent.

Parameter Highway lorry Urban lorry Courtyard car Parking car
v0 [km/h] [50,100] L (80,10) [30,70] L (40,8) [5,30] L (15,5) [5,20] L (5,5)
m [t] [12,40] N (20,12) [12,40] N (20,12) [0.5,1.6] [0.5,1.6]
α [°] [8,45] R(19,10) [8,45] R(10,10) [8,45] R(10,10) [8,45] R(10,10)

Fdesx [kN] 1000 500 50 40
Fdesy [kN] 500 250 25 25

Table 1: Parameter value information for the different vehicle–speed categories



3 Uncertainty models and optimisation criteria

Let us now briefly describe how we can transform the optimisation problem with uncertain constraints,
described by Eqs. (4)–(6), into a problem of decision making that can be addressed using techniques from the
theory of imprecise probabilities. We follow the steps we have already proposed in previous work [3].

Since we are uncertain about the value that the random variable (quadruple) Y assumes, the optimisation
problem considered here is not well-posed, and we propose to turn it into a well-posed problem through the
following trick: we consider a utility (or gain) function Gd : Y → R defined by

Gd(y) = L+( f (d)−L) IdR =

{
f (d), if dRy,
L, otherwise,

(7)

where L is a constant such that L < inf f , and IdR is the indicator function of the set dR = {y ∈Y : dRy}—the
so-called R-afterset of d, assuming the value one on this set, and zero elsewhere. It associates with every
possible decision, or choice of d, a gain which is equal to f when the constraint is satisfied, and equal to a
constant penalty L when the constraint is not satisfied.

We are now faced with a decision problem: decide which d to choose in the face of our uncertainty about Y .

When the uncertainty about Y is modelled probabilistically, the approach usually followed is to choose that
action d which maximises the expected gain E(Gd) = L+( f (d)−L)E(IdR).

As we see, in order to compute E(Gd), we need an evaluation of E(IdR). We obtain that by performing a
Monte Carlo simulation, which is a widely used computational method for generating probability distributions
of variables that depend on other variables or parameters represented as probability distributions. In its most
straightforward form, a Monte Carlo simulation usually assumes that input parameters are independent. If they
are not, some adjustment may be necessary. As with any use of a mathematical model, the results are only as
good as the assumptions, and the choice of assumptions, particularly simplifying ones, requires professional
judgement. In our problem, because all the variables are taken to be independent, we can perform a simple
Monte Carlo analysis to obtain E(IdR).

When more general, so-called imprecise probability models [2, 5] are given for the uncertainty about Y , the
linear expectation operator E is replaced by a pair of non-linear lower and upper expectation operators E
and E, which provide lower and upper bounds for the expectation E. This will for instance be the case for
the courtyard and parking car categories described above, where we have no probabilistic but only interval
information for the mass.

In this case, we must extend the ideas behind maximising expected gain towards our more general context.
This can be done in two interesting ways. In the first one, called the maximinity approach, we choose the
decision d which maximises the lower expected gain E(Gd). It can be interpreted as follows: we look at
the worst that could happen under each decision and then choose the decision with the largest payoff. This
criterion leads to the maximum of the minima or the best of the worst. Taking into account that

E(Gd) = L+( f (d)−L)E(IdR),

the solution for this problem is given by:

argsup
d∈R+

E(Gd) = argsup
d∈R+

[ f (d)−L]E(IdR). (8)

This means that we need to calculate E(IdR). If g is any real-valued function of m, v0, a and α , then E(g) is
calculated, due to the independence assumptions (see also [5, Chapter 9] and [1]) by first fixing a value of the
mass m in the given interval M = [m,m] of reasonable values, and calculating E(g(m, ·, ·, ·)) by Monte Carlo
simulation as indicated above, and then minimising over all possible m in the interval M:

E(g) = inf
m∈M

E(g(m, ·, ·, ·)). (9)



E(g) is found similarly, by maximising over all m in M.

With E(IdR) computed as in Eq. (9), the problem to solve is now a classical optimisation problem.

For the second, so-called maximality approach, we define a strict partial order on the possible decisions as
follows:

d1 � d2⇔ E(Gd1−Gd2)> 0.

This is a robustified version of the order on the decisions d considered for precise probability models, which
is based on expected gain: d1 is to be preferred to d2 if and only if it would be so preferred for all the precise
probability models that are compatible with the imprecise model, meaning that their expectation operators E
lie between the lower and upper expectation operators E and E.

An optimal decision will now be any d ∈ R+ that is undominated in this strict partial order, and it can be
shown [3, 5] that this is the case if and only if E(Gd−Ge)≥ 0 for all e ∈ R+, or equivalently,

inf
e∈R+

E ([ f (d)−L]IdR− [ f (e)−L]IeR)≥ 0. (10)

If we use the methodology leading to Eq. (9), we see that we need to consider the function

H(d,e) = sup
m∈M

[[ f (d)−L]E(IdR(m, ·, ·, ·))− [ f (e)−L]E(IeR(m, ·, ·, ·))] , (11)

where, as before, the expectations can be calculated using Monte Carlo methods. An optimal distance d is
such that H(d,e)≥ 0 for all e ∈ R+. We can find such d by looking at plots of the function H(d,e).

Observe that this second method will generally lead to an interval of optimal solutions, each member of which
is incomparable (nor better, nor worse, nor equivalent) with the others: given the available information about
the random variable Y , these are the optimal values, but nothing more can be said to allow us to refine this
picture.

It can be shown [5] that the maximinity solution is always included in the maximality interval of solutions,
and that in the case of precise probability models for Y , both solution methods coincide with maximising
expected gain.

This provides us with two types of solutions to the cost optimisation problem. Of course we also need to check
whether these optimal solutions satisfy the safety constraint (1), and therefore dominate the smallest value of
the distance that does so.

When the available model for Y is (precise-)probabilistic, the probability on the left-hand side in Eq. (1) is
given by E(IdR), and can—as explained above—be found by simple Monte Carlo methods.

For the courtyard and parking car categories, we only have interval information for the mass, and then we
must impose that all compatible precise models (one for each possible value of the mass m) should satisfy
the constraint, which is equivalent to requiring that E(IdR)≥ 0.99, where as before, the left-hand side can be
calculated by Monte Carlo methods and subsequent minimisation over all m in M.

4 Vehicle impact on bridge pillar: Precise-probabilistic case

Let us now succinctly present the numerical results of applying the methods outlined in the previous section
to the four categories given in Section 2. We start with the case where all uncertainty models for the random
variables appearing in Eq. (1)—mass m, initial speed v0, deceleration a and angle α—are (precise) probability
models. The information we have about these models can be found in Table 1 and the paragraph preceding it.



4.1 Highway lorry

First, we look at the fastest and heaviest type of vehicle: the highway lorry.

The graph of the probability P(dR) = E(IdR) that the constraint (1) will be satisfied as a function of d is given
on the left-hand side below. It allows us to pinpoint dmin ≈ 29m as the smallest acceptable value for d.
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In addition, we give the graph of the optimal value d∗ as a function of the penalty L (calculated with a step
size of 50 and expressed in millions of euros), but with inverted axes to allow for easy comparison with the
previous graph. It appears that for penalties L greater in magnitude than about 200 million euros, the optimal
value d∗ satisfies the constraint (1). This gives us an idea of the penalty implied by the somewhat arbitrary
99% borderline.

4.2 Urban lorry

For the urban lorry category, we see that dmin ≈ 12m. There is also the following relationship between the
optimal value d∗ and the penalty L (calculated with a step size of 5 and expressed in millions of euros).
For penalties L greater in magnitude than about 50 million euros, the optimal value d∗ of d satisfies the
constraint (1).
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5 Vehicle impact on bridge pillar: Imprecise-probabilistic case

In this section, we look at the categories for which our information about one of the parameters, namely the
mass m, is given by an interval. To deal with it, we use the techniques from the theory of imprecise probabilities
elaborated on in Section 3. We explained there that two possible approaches can be taken to decide which
d-values are optimal or not, maximinity and maximality; both will be used. Again, the information we have
about the parameter values can be found in Table 1 and the paragraph above it.



5.1 Courtyard car

Maximinity The following plots represent the lower probability P(dR) = E(IdR) of satisfying the force
constraint as a function of d (left-hand side), and the relation between the cost-optimal distance d∗ and the
penalty L (calculated with a step size of 0.5 and expressed in millions of euros). We see that dmin ≈ 2.5m,
and that for penalties greater in magnitude than about 6 million euros, the cost-optimal distance d∗ under
maximinity guarantees that the constraint (1) is satisfied.
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Maximality For the solutions involving the maximality criterion, we need to consider the function H(d,e);
we have depicted this function, for L = 6 million euros, in the plot below on the left-hand side. In the contour
plot on the right, we have depicted in grey the region where H is negative. This leads to the interval [0m,2.5m]
of optimal values for d, which as expected, contains the maximin cost-optimal solution.
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5.2 Parking car

Maximinity The following plots represent the lower probability P(dR) = E(IdR) of satisfying the force
constraint as a function of d (left-hand side), and the relation between the cost-optimal distance d∗ and the
penalty L (calculated with a step size of 0.5 and expressed in millions of euros). We can see that dmin ≈ 0.7m,
and that for penalties greater in magnitude than about 2 million euros, the cost-optimal distance d∗ under
maximinity guarantees that the constraint (1) is satisfied.
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Maximality For the solutions involving the maximality criterion, we again need to consider the function
H(d,e); we have depicted this function, for L = 2 million euros, in the plot below on the left-hand side. In the
contour plot on the right, we have depicted in grey the region where H is negative. This leads to the interval
[0m,0.7m] of optimal values for d, which as expected, contains the maximin cost-optimal solution.
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6 Conclusions

We have considered an optimisation problem under uncertain constraints, where (i) the optimal distance from
the side of the road where a bridge pillar should be built has to be found such that the probability of the impact
force in case of collision being smaller than a design value is greater than 99%. At the same time, (ii) we
addressed the minimisation of the cost function of building the bridge. The usual optimisation techniques
could not be applied directly because of the presence of uncertain constraints in the model. A new approach
was taken in order to remedy this problem, which converts the optimisation into a decision making problem
under uncertainty.

We considered four categories of vehicles, and in each case we have found a cost-optimal distance from the
side of the road where a bridge should be built such that the given constraints are satisfied.

The distance d from pillar to road can also be chosen in accordance with what the area between road and pillar
is used for. This leads to the following course of reasoning: the functionality distance dfun is the sum of the
widths d1 of the emergency lane, the width d2 of the dewatering facilities, and the width d3 of the maintenance
road or inspection path. For a motorway, usually d1 = 3m, d2 = 1 to 2m and d3 = 1 to 5m. This yields a
functionality distance dfun between 5 and 10m.

In the case of the highway lorry, the cost-optimal distance of 29m exceeds the maximal functionality distance
of 10m. A possible explanation for the difference can to an important degree be attributed to our letting
s = 1.4 in the calculations. The factor s converts the highest allowable elastic design force into the highest
allowable dynamic design force. Therefore this s depends quite strongly on the actual design of the pillars.



A commonly used value for s is 2.4. At a value of 2.4 the corresponding cost-optimal distance d∗ would be
smaller than the one for s = 1.4, and it seems clear that our optimisation tool can be used to determine the
value of s for which d∗ ≈ dfun. We could for instance then design the pillar in such a way that the dynamic
resistance would be at least s times the elastic resistance.

For the urban lorry case, the cost-optimal distance is 12m, which is of the same order as the functionality
distance.

In practice the available space next to the road is limited, and the minimal functionality distance 5m is used.
In both cases (highway lorry and urban lorry), the cost-optimal distance is much higher than the minimal
functionality distance. When using the minimal functionality distance, road restraint systems are used in front
of the pillar because the actual collision force is now much more likely to exceed the design force.

For the parking car category, the cost-optimal distance of 0.7m corresponds to the safe object distance of 1m
that is used in road design.

The cost-optimal distance of 2.5m for the courtyard car category indicates that the expected accidental force
is higher than the design force. Of course, in practice the courtyard car and the parking car categories are not
considered in bridge design, due to the much smaller design force (50kN) in comparison with the highway
lorry category (1000kN). However, when designing structures at the edge of parking areas, one should be
aware that the design forces are too low, as our study indicates, and therefore protective measures should be
considered.
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