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Abstract

The demand for drives with high quality torque control has
grown tremendously in a wide variety of applications. Direct
torque control (DTC) for permanent magnet synchronous motors
can provide this accurate and fast torque control. When applying
DTC the change of the stator flux linkage vector is controlled.
As such the estimation of the stator flux linkage is essential.
In this paper the performance of the Extended Kalman Filter
(EKF) for stator flux linkage estimation is studied. Starting from
a formulation of the EKF for isotropic motors, the influence of
rotor anisotropy and saturation is evaluated. Subsequently it is
expanded to highly isotropic motors as well. In both cases the
possibilities to add parameter estimations are evaluated.

1 Introduction

In recent years the use of highly dynamic electrical drives has
increased steadily in applications ranging from industry automa-
tion to electrical cars. These highly dynamic electrical drives
have to provide accurate and fast torque control together with
the highest possible efficiency. Owing to their characteristics of
high efficiency, high power density and reliability AC machines,
and more recently especially permanent magnet synchronous
machines (PMSM’s), have obtained dominance. To control the
torque and flux levels of AC machines rotor flux oriented control
is seen as an industry standard. Alternatives however exist and
Direct Torque Control (DTC) can provide accurate fast torque
control. Originally proposed for induction motors in [7] DTC
became rather popular in the past two decades. This is mainly
due to the fact that DTC for induction machines is inherently
motion-state sensorless. This lead several authors [5], [6], [9] to
propose ways to adapt DTC to work with PMSMs.

The principles of DTC are derived by examining the equation
for electromagnetic torque 7' of an PMSM

N, |¥
_ ind'Lj(z |9, | Lysing — W, [ (Ly — La)sin28), (1)
where ¢ denotes the load angle between the stator flux linkage
W, and permanent magnet flux linkage W, vectors in the
stationary o frame. The number of pole pairs is denoted by
Np. Lq and L, are the direct and quadrature axis inductances. If
these inductances are equal, the equation (1) reduces to (2). This

is often assumed for an PMSM with surface-mounted magnets

where the direct and quadrature axis reluctances are almost
identical and thus Ly = L, = L is used.
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From (1-2) can be seen that for constant stator flux linkage,
the torque is changed by changing the load angle . The stator
flux vector can be changed by applying from the inverter the
voltage vector with the most appropriate radial and tangential
components. Although different control strategies are used in
DTC, in all implementations the switching decision is based
on three estimated variables. These are: estimated torque 7' =
SN, (Vs.alp— W, gl,), stator flux linkage magnitude |, | and
angle fy_. As these are determined by the estimation of the
stator flux linkage components ¥, , and ¥, 5 the estimation is
crucial for correct operation of the drive, as shown in figure 1.
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Figure 1: Torque and flux estimator schematic for DTC

Several estimation techniques have been reported in the literature
[3]-[51, [9], a comparison is given in [10]. One possibility is
the use of state observers, such as the Extended Kalman Filter
(EKF), that calculate the stator flux linkage vector with estimated
state variables (including rotor speed and position). The EKF is
often discussed for the sensorless control of PMSMs, however
focused on the sensorless position estimation for current control
in the rotor flux reference frame. Few publications discuss the
EKEF for the estimation of the stator flux linkage vector [3], [4],
[10], [11].

In this paper EKFs for stator flux linkage estimation are
discussed in section 2, with different state vectors for an
SPMSM. Estimation errors due to incorrect motor parameters
are addressed and the EKFs are expanded to include parameter
estimations. In section 3 the effects of neglecting isotropy in
the rotor are studied, saliency and saturation in both the d and
q axis of an SPMSM are considered. To further improve the
estimations and to expand the field of applications to motors
with large saliency, in section 4 different formulations of the
EKF for motors with anisotropic rotors are given and compared.
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2 Reduced-order EKF for isotropic PMSM

2.1 Stator Flux Linkage Estimation

In theory the integration of the back-emf can be used for this
estimation when stator voltages and currents are measured:

t
v, = [ - RL)dt+ 2, ®
0

The use of a pure open-loop integration is a simple method,
relying on only one parameter R, and independent of the
rotor position, but has many disadvantages. An overview and
comparison of several improved methods based on this principle
is given in [10], where also current model based methods are
discussed and compared. The current model is defined in the
rotor oriented dq reference frame for anisotropic rotors by
Vg = Lglg+ Yy 4
UV, = Ly, 5)

or in the stationary af reference frame for an SPMSM with
isotropic rotor:

U,o = Lsly+ Yyscos(0) (6)

Vo5 = LsIﬁ+\ij Sin(a). 7
As is clear from equations (4-7), these methods are dependent
on the rotor position 6, stator inductance (Lg and L, or L) and
permanent magnet flux Wy. The resulting need for a position
sensor is, especially in DTC which is an inherently position
sensorless method, considered as a major disadvantage. Also
the increased parameter dependence on the inductances is, con-
sidering the saturation, a disadvantage. To reduce the parameter
dependence and to perform the rotor position estimation needed
in the current model a state observer can be used.

2.2 Reduced-order EKF

The Kalman filter is a stochastic recursive optimum-state esti-
mator. For nonlinear systems an extended Kalman filter (EKF)
can be used to obtain unmeasurable states (e.g. speed and rotor
position) by using a model for the dynamical system, measured
states and statistics of the system and measurement noise. By
means of the noise input it is possible to take account of both
measuring errors and modelling errors. The EKF is a two-step
method as shown in figure 2. With the measured inputs u; and
machine model (f(x,u) and h(x)) the next state of the machine
X;+1 is predicted (prediction step). From this state the next
output y, . is calculated and compared to the measured value
Zr+1. The error on the output, together with the covariance
values of measurement noise R and system Q are used to correct
the state values in the next step. Often the covariance matrices
are chosen to be diagonal. In this correction or innovation step
the Kalman gain matrix Ky is calculated as well.

In this paper two implementations of the EKF are studied. The
same nonlinear state-space model for the PMSM is used, the
difference between the two methods is based on the selection of
the state variables.

EKFC: EKF with current components
In EKFC the current components in the stationary reference
frame are selected as state variables, as in [4], [9]:
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Figure 2: EKF scheme
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Here w and 0 denote rotor speed and position respectively.

EKFF: EKF with flux components
The stator flux linkage components in the stationary reference
frame are selected as state variables, as in [3]

X = [21 29 23 24]T = [Us0 Vs w 0] 9)

In both cases the voltage u = [V,, V;3]7 and current components
in the stationary reference frame y = [I,, Ig]? are selected as
input and output respectively. The EKF is of reduced order as the
inertia is assumed to be infinite so that the mechanical equation is
omitted. This is very advantageous as the load torque and inertia
in the mechanical equation typically are not known. Because the
speed w is in the state vector the EKF will correct this modelling
error if a good value is chosen for the covariance. More details
about the tuning of EKF’s can be found in [2].

For EKFC and EKFF respectively the system function f(x,u),
output function h(x) and Jacobians F = % and C = %ﬁ) are
given in Table I. When inspecting the Jacobians it is obvious that
the expression of F is more complicated for EKFC than EKFF
while the reverse is true for C. In this paper we define, besides
the output function y that is used to correct the estimation, an
additional output function o(x) expressing the ’useful’ output

(stator flux components) as a function of the state components.

2.3 Influence of parameter variations

In [10] and [11] the effects of incorrect values for the stator
resistance 7, stator inductance Lg, and permanent magnet flux
U, on the performance of EKFC and EKFF in a DTC drive
have been investigated. The influence of an incorrect value of
the stator resistance R, is found to be very small and only
important during transients, even for large deviations of R,. This
is true for both the error in estimated stator flux vector magnitude
and angle. As the EKFs are based on the current model the
dependence on L, and ¥y is investigated as well. As shown
in [10], the estimators remain stable but show both a dynamic
and steady-state deviation of both flux magnitude and angle.
The estimations with EKFC and EKFF in this case do not yield
better results than the open-loop current model with measured
position. The remaining advantage is a sensorless estimation.

The correction in the estimation when R, is varied is the result
of the fact that the EKF estimators can correct for the modeling
inaccuracies by the feedback loop. For variations in Ly and Wy
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Table II: Equations for EKFC and

this is not the case as these parameters, unlike R, are not only
used in f(x,u). For EKFC the state vector x will converge to
the correct values, but due to the use of L, and ¥ in o(x)
to determine ¥, and Wg from x the output is incorrect (i.e.
the same situation as for the current model with measured rotor
position). For EKFF however L, and U are used in h(x) and
thus the state vector x will not converge to the correct values.

2.4 Adding parameter estimations to the EKF

As discussed in [10], [11] the EKFs fail to estimate the stator
flux vector correctly if motor parameters used in h(x) and o(x)
deviate from the true values. A possible solution to overcome
this problem is investigated in [11]. The most important motor
parameters in the EKF are estimated as well. This can be
done by augmenting the state vector with the parameters to be
estimated, where parameter variations are given no dynamics
(i.e. the corresponding row of f(x,u) is 0). In [11] three cases
and aspects of the practical FPGA implementation are discussed.

Here two cases are considered, Table II gives the expressions
for EKFC and EKFF with added parameter estimations. In the
first case (EKFCA1 and EKFFA1) L, is added to estimate as
this is a parameter that can vary strongly during operation of
the drive. It has to be noted that in order to take the variation
of L, into account, actually % is added to the state vector. The
choice for L, as a state component would, due to the partial
differentiation, result in expressions for F and C that are much
more complex (too complex for actual implementation).

EKFF with augmented state vector

In the second case (EKFCA3 and EKFFA3) the estimation of
all three relevant parameters L, s, Uy is performed. For the
sake of brevity, the expressions for the Jacobians F and C have
been omitted in Table II. However it is clear that the increased
complexity is even more easily seen in F and C due to the
increased non-linearity of the model. This of course means that
the computation of the estimation covariance matrix P and the
Kalman correction matrix K become increasingly complex [11].

As shown in [11] adding parameters to the estimation can work,
but great care should be taken as unwanted cross coupling
effects of parameter variations can occur with a poorly chosen
covariance matrix Q. Clearly it is important to refrain from
putting too little confidence (high values in Q) in the model
as this could induce overcompensation of the parameters and
thus result in poor performance. However with a good choice of
covariance matrix good estimations can be obtained.

3 Motor anisotropy and saturation

Up till this point only isotropic motors have been considered, i.e.
motors for which the reluctances along the direct and quadrature
axes are equal. It is customary to consider permanent magnet
synchronous motors with surface-mounted magnets (SPMSM)
as completely isotropic motors since often a symmetrical non-
salient rotor construction is assumed and the magnet permeance
is equal to that of air. Due to the relatively large air-gap
saturation is often assumed to be negligible for SPMSMs.
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Figure 3: Obtained inductances for a Siemens PMSM, total inductances are shown: to obtain Lq and L, divide by %
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Figure 4: Dynamic operation of SPMSM with saturation. A: Torque and speed B: percentage flux magnitude error C: flux angle error

In reality however many SPMSMs do not necessarily have
a symmetrical non-salient construction which can result in a
different L, and L,. Besides this physical saliency, saturation-
induced saliency can occur as the current in d and ¢ axes is
different and will saturate the iron of the motor. Finally the
saturation of the iron due to the permanent magnet itself can
give rise to a difference between d and g-axis inductance for a
no-load situation as well.

To study the behaviour of saturated PMSMs a broadband
frequency-domain identification procedure was presented in [8],
[12]. This method is an extension of the Stand Still Frequency
Response (SSFR) as standardized in IEEE Std.115 and uses
broadband voltage signals (mainly multisines) to excite the
PMSM. The machine impedance is obtained from the current
response in the frequency domain and the machine inductance
is extracted with a least-squares method. The approach has been
tested both with a linear amplifier [12] and an inverter [8] to
provide the excitation. In figure 3 the obtained inductances L4
and L, for a Siemens PMSM are depicted. Clearly the motor
construction and the saturation in the d-axis due to the permanent
magnet result in Ly < L,. Besides the no-load difference in
inductance there is also an expected, but appreciable difference
when either axis saturates. In this light three questions arise:

« How is the stator flux estimation influenced by modelling

Lq = L4 = L, without saturation?
« How is the parameter estimation influenced by this?

« Can the stator flux and/or parameter estimation be improved
by using an anisotropic model in the EKF?

To study the influence of the assumptions (Lg = L, = L) used
in the EKF, simulations were performed where EKFC and EKFF
estimate the stator flux vector of a motor with anisotropy and
saturation. Motor parameters are given in Table V; saturation
and anisotropy information is given in figure 3. For the highly
dynamical operating conditions (loads up to 3 times nominal
torque, load and speed reversing) of figure 4A, the errors on
the stator flux vector magnitude (4B) and angle (4C) obtained
with EKFF are shown (EKFF would be even more sensitive to
variations of L, then EKFC, as discussed before). Clearly EKFF
remains stable and the influence of assuming Ly = L, = L, =
10 mH is rather small (less then 3% in amplitude, and maximal
2 electrical degrees in angle).

When the parameter L is estimated, for EKFFA1 and EKFFA3,
the stator flux estimation remains stable as shown in figure 4. For
EKFAL1 the errors on flux magnitude and angle are again small,
notice the steady-state improvement between EKFA1 and EKFF:
if there is no transient the error becomes almost zero after some
time for EKFFAL. In figure 5 is shown how the L-estimation
converges after each transient to the average value of L, (even
when, due to temporary flux weakening operation, L, < Lg)
For EKFFA3 R, and ¥, are additionally estimated. In figure
5 it is clear that the error in Ly influences the other parameter
estimations as well, showing the difficulty to select the Q matrix.
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Figure 5: Evolution of the estimated parameters in the EKF

The resulting loss of estimation precision can be seen in figure
4, with errors up till 10% and 10 electrical degrees. Overall
it can be concluded that the influence of the motor anisotropy
and saturation is not too dramatic for the EKF. However this
depends strongly on the parameter values for particular motors,
this PMSM has a small L, for the given Wy.

4 EKF for anisotropic motors

Even though the influence of anisotropy can be rather small for
certain motors, it can be more important for others. Furthermore
an extension of these results to interior permanent magnet

synchronous motors (IPMSM) is desired. The use of EKFs for
IPMSMs in literature is very limited and always focused on the
estimation of the rotor position, not the stator flux vector.

As discussed in [1] executing the EKF for IPMSMs in a
stationary a3 reference frame is very difficult. As such the EKF
for IPMSMs the motor model departs from equations 6-7 in a dq
reference frame. This means that the state vector for the EKFC-
version (EKFCS) and EKFF-version (EKFFS) are respectively:
(21 29 23 24)" = [ig ig w 07 (10)
(21 29 23 24]T = [Uq U, w O] 1)

The measured inputs and outputs however are obtained in the
stationary «f reference frame. As such there is a choice to
perform the change of reference frame for u,y, and z either
outside of the EKF or inside.

X =

X =

4.1 EKF with u,y, and z in the dq reference frame

A classical approach [1] is to leave the rotational transformation
out of the EKF, the equations are given in Table III. In that
case the input u and outputs y, z used in the EKF are in the dg
reference frame:

u = [ug us]" = [Vam Vyml” (12)
y = [y ye|” =liqgig)" (13)
z = [z 29" = [iam iqm]” (14)

This change of reference frame is based on the estimated rotor
position # from the EKF. However, the estimated rotor position 6
is not really used in the EKF and follows only from the estimated
speed w. This means that a small remaining error in the speed
will give rise to an increasing error in the position. As such the
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change of reference frame becomes more increasingly incorrect
until the estimation ’slips’ and reconverges on a correct solution
[w, +2k7] instead of [w, 0]. In figure 6 the resulting error in the
stator flux magnitude (up to more then 50%) is shown together
with the evolution of % for the load cycle of figure 4.

4.2 EKF with u,y, and z in the o reference frame

The equations in Table III are valid when executing the rotational
transformation inside the EKF (the expression for o(x) remains
the same as previously). In that case the input u and outputs y, z
used in the EKF are in the af reference frame:

u = [ug u]” = [Vam Vaml® (15)
Y = [y1 y]" =lia ig)" (16)
7z = [Zl ZQ]T = [ia,m iﬁ,m]T (17)

When inspecting the equations in Table III and Table 1V, it is
clear that in the second case much more information about 6
is available and a better correction on 6 can be performed. The
downside is of course the increased computational complexity.
In figure 6 clearly the error in the stator flux magnitude is much

smaller and the error Af is quickly corrected.

4.3 Added parameters

To obtain better estimations with varying parameters, augment-
ing the state vector exists as a possibility here as well. However,
one should take into account that estimating the inductances
means already an increase of 2 for the order in the case of
EKFFS. For EKFCS there are additional problems: due to the i—:

and ﬂ factors a division of two state variables is present (even

When We estimate L and 7. Due to the partial differentiation
this results in express1ons for the F and C that are much more
complex and are prohibitive for an actual FPGA implementation.

5 Conclusions

In this paper the use of several formulations of an Extended
Kalman Filter to estimate the PMSM stator flux vector has been
studied. Besides formulating different versions, the influence of
incorrect motor parameters and modelling inaccuracies, such as
anisotropy and saturation, have been discussed. For SPMSM it
is shown that using an EKF with isotropic motor model works
well, even when the motor is anisotropic and saturates. When
estimating motor parameters in the EKF W ¢, potentially together
with Lg, is the best choice. For motors with important saliency
(IPMSMs) suitable versions of the EKF are presented. Executing
the change of reference frame inside the EKF is preferable.
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