
An FPGA-based Real-Time Event Sampler

Niels Penneman1,2, Luc Perneel3,
Martin Timmerman1,3, and Bjorn De Sutter1,2

1 Electronics and Informatics Department, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

2 Computer Systems Lab, Ghent University
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{niels.penneman|bjorn.desutter}@elis.ugent.be
3 Dedicated Systems Experts

Bergensesteenweg 421 B12, 1600 St-Pieters-Leeuw, Belgium
{l.perneel|m.timmerman}@dedicated-systems.info

Abstract. This paper presents the design and FPGA-implementation
of a sampler that is suited for sampling real-time events in embedded
systems. Such sampling is useful, for example, to test whether real-time
events are handled in time on such systems. By designing and imple-
menting the sampler as a logic analyzer on an FPGA, several design
parameters can be explored and easily modified to match the behavior
of different kinds of embedded systems. Moreover, the trade-off between
price and performance becomes easy, as it mainly exists of choosing the
appropriate type and speed grade of an FPGA family.

Keywords: real-time testing, event sampling, logic analyzer, FPGA

1 Introduction

Real-time (RT) computing systems have constrained reaction times, i.e., dead-
lines have to be met in response to events. Ensuring that the constraints are met
on a device for a given operating system and set of applications becomes difficult
as soon as either of them shows non-trivial behavior. For hard RT systems guar-
antees have to be provided, which is often done by means of worst-case execution
time analysis and by relying on predictable algorithms and hardware [1, 2].

Given the criticality of the RT behavior for safety, quality of service, and
other user-level requirements, extensive testing of the RT behavior is often per-
formed on a full system. Hence precise methods are needed for observing that RT
behavior. Some requirements of these methods are that (1) they should be fast
and accurate to allow the correct observation of events happening at high rates,
(2) they should be non-intrusive to make sure that the system under test (SUT)
behaves as similar to the final system as possible, (3) the methods should be
configurable for different measuring contexts, given the wide range of RT dead-
lines and of application behaviors, and (4) given that relatively few developers
will test RT behavior, the required infrastructure needs to be cheap.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55822350?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On many embedded systems, the rate at which events occur is so high
that software-only solutions cannot meet the first two requirements. This pa-
per presents an FPGA-based event sampler which can be used in a hardware-
software cooperative approach. The SUT emits signals through hardware when
events occur, which are then captured by the sampler. This system will be (1)
fast enough because it runs on an FPGA, (2) reconfigurable by altering design
parameters or by choosing different FPGAs, (3) cheap because it does not re-
quire high-end FPGAs, and (4) non-intrusive because the required changes to
the SUT are minimal. Our proposal is in line with today’s use of FPGAs to speed
up EDA tasks such as software-hardware co-design and system simulation.

The remainder of this paper is structured as follows. Section 2 provides more
background information on the problem of RT event sampling. The design of an
FPGA-based sampler is presented in Section 3, after which Section 4 evaluates
the performance obtained with this design, and Section 5 draws conclusions.

2 Real-Time Sampling System

The goal of our system is to sample signals emitted by the SUT, timestamp
them, and send them to the tester’s workstation for further interpretation.

Hardware signals corresponding to events on the SUT have to be emitted
with the least possible intrusion on its behavior. Furthermore, the emitted sig-
nals have to reach the logic analyzer with predictable, fixed latency; otherwise,
precise tracking of RT behavior is not possible. This rules out several existing
communication interfaces such as PCI, PCI Express and IEEE 1149.1 JTAG.

By contrast, General Purpose Input Output (GPIO) interfaces can be con-
trolled with fixed latency, using memory-mapped IO through GPIO registers.
The adaptation of a RT OS to emit signals via a GPIO interface upon events
is then limited to manual instrumentation of the code, adding at most a few
instructions per event. Similar uses of GPIO can be found in, e.g., [3, 4].

Six commercially available logic analyzers have been evaluated [5–10]. None
of these devices can sample for a prolonged time with high accuracy. Firstly, most
of them sample continuously, instead of only storing samples as events occur.
Hence, large amounts of data are generated. Secondly, the available memories
tend to be too small to capture a reasonable amount of events.

It is clear that both a large memory and event-based sampling are key to
solving our problem. For that reason, our design captures data from eight input
channels: four channels for actual test data, two channels for interrupt generation
testing, one channel for the SUT to signal an error, and one channel for times-
tamp counter overflow detection (optionally configurable as external input [11]).

Figure 1 shows an overview of our design. Samples are 32 bits in size, of
which 8 map to the input signals, and 24 are dedicated to the timestamp. The
timestamp is provided by a counter, operating at the sampling frequency. In
order to reconstruct the exact timing, counter overflows are also stored as events.
A control block on the data path enables the sampler to start and stop registering
events. Users can interact with this block through the management interface. The

!"#$%&'($

)*#+,-./

/
0

!"12#,

3+'""$45

/*6$5#'61,

372"#$%

89$%&47)

:771;'(<

3761'%$,

#7,=%$9*725
/
>

/
?@

/
> A$67%B 82#12#,

!"#$%&'($
37"#%74,

C47(<

/
D?

/
D?

,.5$%,!"#$%&'($,#7,-#'%#E-#71EFFF

,-'614$G,H'#'

A'"'I6"#,!"#$%&'($

Fig. 1. Conceptual design of the logic analyzer device. Black arrows indicate data
edges, while white arrows indicate control signals.

Device Logic Elements 9kb Memory Blocks Total RAM Bits PLLs Global Clock Networks
EP3C25 24,624 66 608,256 4 20
EP3C40 39,600 126 1,161,216 4 20

Table 1. Overview of some relevant features of targeted Altera Cyclone III devices.

control block may also stop the sampling process whenever errors are detected,
and provides reset functionality as a recovery mechanism. The samples stored
in internal memory can be retrieved through the output interface.

3 Logic Analyzer Design

This section discusses the different components of our design as a so-called Sys-
tem on a Programmable Chip (SOPC) on Altera’s Cyclone III FPGA devices.
Although our design will also work on more advanced FPGAs, our design choices
will be based on the EP3C25F324C8 FPGA. Some properties of the Cyclone III
device family are presented in Table 1.

3.1 Communication with the Workstation

As indicated on the right in Figure 1, the sampler needs to transmit sampled data
to the workstation of the tester. Moreover, the tester must be able to control the
sampler. Ethernet is fast enough for our purpose and future-proof with respect to
commonly used workstation configurations. Although hardware TCP/IP stack
implementations exist [12, 13], they are either limited in functionality or overly
complex in terms of hardware and resource usage. Alternatively, Altera provides
a SOPC development environment [14] with ready-to-use components [15–17],
including the Nios II soft-core CPU and an Ethernet MAC suitable to run a
software TCP/IP stack. Opting for this solution requires us to design a custom
SOPC. The CPU can then be used to run both the TCP/IP stack and the
software control over the whole sampler.

In the structure of the whole RT sampler design, the five components on the
top right of Figure 2 implement the Ethernet interface. The Ethernet MAC core
has two streaming interfaces, one for transmitting (TX) and one for reading (RX)
data. Each of these interfaces needs to be connected to the data memory using
scatter-gather DMA controller cores. The operation of these cores is defined

Triple-Speed Ethernet MAC

S-G DMA

TX

PLL

System ID
Descriptor

Offset
Bridge

RX

S-G DMA

Nios II/s Core

JTAG UART

Timestamping Core
SSRAM

Offset Bridge

System
Timer

S-G DMA

 Control

Data

 S-G DMA to SSRAM

/
8

Sample Input

42

DDR SDRAM

/
18

Ethernet PHY

61
SSRAM

Descriptor Memory

/
DDR SDRAM

Controller

Descriptor Memory

Slow Domain

Fast Domain

SSRAM interface

Clock Crossing Bridge

/

Fig. 2. Structure of the whole logic analyzer design.

through DMA descriptors. In order to improve performance, a separate on-chip
memory region is allocated to hold these descriptors. The Nios II CPU connects
to all of these components using memory-mapped interfaces. The Ethernet MAC
and DMA cores implement slave ports and interrupt senders through which
they can be controlled and monitored. The CPU also needs access to the DMA
descriptor memory to allocate and initialize descriptors.

The software TCP/IP implementation running on the Nios II core controls
all this hardware. Output data to be transmitted to the tester’s workstation
is obtained from external DDR SDRAM via the DDR SDRAM controller. The
rationale for this type of memory is explained in Section 3.3.

3.2 Control over the Logic Analyzer

The Nios II CPU, on which the control software will run, comes in three dif-
ferent configurations [16]: economy, standard and fast. We chose the standard
configuration: the fast configuration is too large, offering features our software
cannot exploit, while the economy version does not offer enough performance.

The software [11] is built on the MicroC/OS-II RT OS [18]. Alternatives are
available, such as uClinux [19] and eCos [20]. Their Nios II ports [21] were not
considered because they were either outdated or lacked integration support with
recent Altera software versions. The TCP/IP stack is provided by InterNiche.

The initial memory footprint of the software varies between 1256 and 1350
kB, depending on how much debug code is included. As detailed in Section 3.3,
samples need to be moved from the SSRAM into the SDRAM before they can be

!"#$%"&$'

()"*+$

,)"-./0/$'

()"*+$

12#)$33'145167891'

..:;<
<03/$)'1=>#=&$&/3 ..:;<

Fig. 3. SOPC components constituting the SSRAM interface.

sent over the network. Therefore, a buffer is allocated statically in the SDRAM
with the size of the SSRAM, which accounts for 1024 kB of the footprint.

3.3 Memory Architecture

Our logic analyzer requires memories to store the timestamped signals before
they are being transferred to the tester’s workstation. We opted for an approach
with three types of memory: on-chip RAM, SSRAM, and DDR SDRAM.

SSRAM provides burstable and hence predictable storage. The timestamping
core acts as a master to this memory to store samples through the interface shown
in Figure 3. The DMA controller at the bottom of Figure 2 also acts as a master
to transfer samples from the SSRAM to the SDRAM through the clock crossing
bridge. Clock crossing bridges add their address as an offset to the address of
their slave components. Since Altera requires SOPC designs to use a flat memory
model, offset bridges must be introduced to compensate for this behavior.

In order to prevent other components from interfering with the single-port
SSRAM, the slower SDRAM is used as general-purpose data memory. This
means that the Ethernet interface also gets its data from the SDRAM. Sam-
ples are transferred to this SDRAM from the SSRAM in a fast and predictable
manner by the DMA controller, controlled by the software. By filling the buffer
internal to the timestamping core instead of writing samples directly to the
SSRAM, the SSRAM port can be freed to allow transfers to the SDRAM. Be-
cause the software controls both processes (unlike the Ethernet interface, which
is also dependent on external factors), it is capable of scheduling the reads and
writes to the SSRAM without blocking the timestamping core unnecessarily.

3.4 Timestamping Core

The gateware for the actual timestamping needs to fit in Altera’s SOPC model
to allow interaction with other components such as the CPU and memory de-
vices. For that reason the timestamping core is designed as a custom component
following the Altera SOPC standards. This core samples external signals, adds
timing information and manages an integrated on-chip buffer.

The pipelined data flow within the timestamping core is depicted in Figure 4.
The timestamp counter is continuously incremented at the sampling frequency.
First, raw input from the FPGA pins is combined with the value of the timestamp
counter into a sample. Next, the input bits are compared with the relevant bits
of the previous sample. When sampling is enabled and the inputs are different,
the new sample is enqueued in the on-chip FIFO buffer.

!"#$%&'()*)!(

+,-'./(0122/3
+,-'./3(4",5./67

$8-',3/(98(

:3/;&81<

=&-/<9,-'($81"9/3

>,?(*"'19

$8-5&"/(*"'19(

,"6(=&-/<9,-'

01<(*"9/32,@/(

A6,'9/3

A663/<<($81"9/3

B&C%(+'//6(01<(98(!22#$%&'(D/-83E

+,-'./($81"9/3

Fig. 4. Pipelined data flow within the timestamping core.

The on-chip FIFO buffer provides independent read and write ports. Adapter
logic enables the read side to operate as a memory-mapped bus master. The
address to write to in the SSRAM is provided by the address counter, which is
incremented on each write operation. A separate sample counter keeps track of
the number of samples written, and is incremented at the same time.

Due to the design of the memory-mapped master interface, the address
counter starts just before the base address of the external memory. While the
number of stored samples could be derived from the rightmost 19 bits of the des-
tination address, doing so would require a 19-bit addition. Although reporting
on this number is generally not a critical operation, detecting that the off-chip
memory is full is however critical. In the separate sample counter, bit 19 indi-
cates this condition. Therefore, using separate counters outperforms the solution
with a 19-bit addition.

3.5 Clock Domains and Other Logic

The whole design was split in two clock domains, because the control over the
whole system is less time-critical than the components involved in sampling,
allowing optimal placement on the FPGA of the latter. Both domains interface
with each other through a clock crossing bridge as depicted in Figure 2.

3.6 Tuning the Design

The sampling accuracy of our design can obviously be improved by using faster
FPGAs or by using bigger ones on which the additional resources increase the
freedom of the fitter, which will hence be able to reach higher clock speeds.

The accuracy can also be increased by introducing a third clock domain
for the timestamping core, which runs at a higher clock rate than the SSRAM
interface. In this configuration, the size of the FIFO buffer internal to the times-
tamping core will determine the maximum burst size. Larger buffers allow longer
bursts, but also require larger FPGAs. Since our design uses 63 out of 66 mem-
ory blocks on our target device, there is barely any room left to experiment with
these features. Using more memory blocks severely limits the freedom of the fit-
ter, and hence results in a significant drop of the maximum sampling frequency.

Logic Elements RAM bits 9kb Memory Blocks PLLs Pins
16,670 (67.7%) 238,382 (39.2%) 63 (95.5%) 2 (50.0%) 130 (60.2%)

Table 2. Resource utilization of the complete design on an EP3C25F324 FPGA.

130,00 150,00 170,00 190,00 210,00 230,00 250,00

EP3C25F324C8

EP3C40F484C8

EP3C40F484C7

EP3C25F324C7

EP3C25F324C6

EP3C40F484C6

fMAX (MHz)

Lower bound at junction temperature of 85°C

Upper bound at junction temperature of 0°C

Fig. 5. Maximum sampling frequency obtained on several Cyclone III FPGAs.

4 Performance Evaluation

All synthesis was performed with Altera Quartus II v9.0 [14], targeting the
Altera Cyclone III FPGA starter kit. Table 2 shows the resource utilization of
the complete design on the target FPGA. Figure 5 shows the maximum sampling
frequency on different Cyclone III devices. For each device, the SDRAM interface
was set to operate at the maximum frequency according to its speed grade.

To interpret these results, one should know that the EP3C40F484 devices are
next in line to EP3C25F324 devices when it comes to available LEs, M9K blocks,
and configurable IO pins; detailed specifications are shown in Table 1. The larger
devices result in a speed gain for the fastest (C6) and slowest (C8) speed grades.
However, the difference for the C6 grade is not significant, as results may slightly
vary with pin assignments or different synthesis parameters.

We can draw the following conclusions: Except for the C8 speed grade, the
resource utilization of the device on the FPGA does not harm its performance.
For sampling frequencies up to 150 MHz, the smallest, cheapest and slowest
FPGA (EP3C25F324C8) is sufficient. For sampling frequencies up to 200 MHz,
the C6 speed grade of the same size (EP3C25F324C6) is a safe bet.

5 Conclusions

This paper presented the design of an FPGA-based RT event sampler that can
be used to test the RT behavior of embedded systems. It supports fast, non-
intrusive sampling, and is cheap because low-cost FPGAs suffice. Its performance
scales very well with different FGPA classes and speed grades. Furthermore,
by changing some design parameters, such as buffer sizes, a wide range of RT
behaviors can be targeted easily, e.g., with or without long bursts of events.

References

1. Sha, L., Abdelzaher, T., Årzén, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo,
G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A histor-
ical perspective. Real-Time Syst. 28(2-3) (2004) 101–155

2. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications (Real-Time Systems Series). 2nd edn. Springer (2005)

3. Choudhuri, S., Givargis, T.: FlashBox: a system for logging non-deterministic
events in deployed embedded systems. In: SAC ’09: Proceedings of the 2009 ACM
symposium on Applied Computing. (2009) 1676–1682

4. Chen, X., Zhang, D., Yang, H.: Design and implementation of a single-chip ARM-
based USB interface JTAG emulator. IEEE International Symposium on Embed-
ded Computing (2008) 272–275

5. Active Technologies: AT-LA500 USB logic analyzer (2008)
http://www.activetechnologies.it/02products/Atla/00Overview/text.htm.

6. CWAV Corporation: USBee DX Test Pod Users Manual. 3.1 edn. (2008)
http://www.usbee.com/dxmanual.pdf.

7. Intronix Test Instruments Corporation: Intronix LA1034 LogicPort PC-based logic
analyzer with USB interface (2008) http://www.pctestinstruments.com.

8. Janatek Electronic Designs: Annie-USB PC-Based Logic Analyzer: User’s Manual.
2nd edn. (2008) http://www.janatek.co.za/annie-usb main.htm.

9. Janatek Electronic Designs: LA-Gold-36 PC-based logic analyzer (2008)
http://www.janatek.co.za/la-gold-36 main.htm.

10. Link Instruments Corporation: IO-3200 USB logic analyzer and pattern generator
for windows (2008) http://www.linkinstruments.com/logana32.htm.

11. Penneman, N.: A renewed sampler system for evaluating and benchmarking
(RT)OS. Master’s thesis, Vrije Universiteit Brussel (2009)

12. Sutton, P., Brennan, J., Partis, A., Peddersen, J.: VHDL IP stack (2001)
http://www.itee.uq.edu.au/ peters/xsvboard/stack/stack.htm.

13. ADESCOM: Wire-Speed Internet: IP Core for VoIP and IPTV Internet (2009)
http://www.adescom.com/ipac1.htm.

14. Altera Corporation: Quartus II Handbook. 9.0.0 edn. (2009)
http://www.altera.com/literature/hb/qts/quartusii handbook.pdf.

15. Altera Corporation: Triple Speed Ethernet MegaCore Function User Guide. 9.0
edn. (2009) http://www.altera.com/literature/ug/ug ethernet.pdf.

16. Altera Corporation: Nios II Processor Reference Handbook. 9.0.0 edn. (2009)
http://www.altera.com/literature/hb/nios2/n2cpu nii5v1.pdf.

17. Altera Corporation: Using high-performance DDR, DDR2, and DDR3 SDRAM
with SOPC Builder. Application Note 517, Altera Corporation (2008)
http://www.altera.com/literature/an/an517.pdf.

18. Labrosse, J.J.: MicroC/OS-II: The Real Time Kernel. 2nd edn. CMP Media, Inc.,
USA (2002)

19. Arcturus Networks Incorporated: uClinux�– embedded Linux microcontroller
project. http://www.uclinux.org.

20. eCos: embedded configurable operating system. http://ecos.sourceware.org.
21. Nios Community Forum: http://www.niosforum.com

