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Numerical model for the determination of hysteresis
loss through the drag force method

Peter Sergeant, Luc Dupré, Lode Vandenbossche, Ivan Garshelis and Stijn Tollens

Abstract— To determine the hysteresis loss in a sample, usually
the enclosed area of the B − H loop is evaluated. In the drag
force method, based on a proper energy balance, the hysteresis
loss is obtained by analyzing the drag force profile when slowly
moving the sample forward and backward through the strong
field of permanent magnets. A numerical time-stepping model
is presented that calculates the drag force profile. At every
time step, the sample is slightly moved. The model is based
on 2D-FE computations including magnetic hysteretic material
behaviour using the Preisach model. In order to improve the
numerical stability, we reformulated the Maxwell equations in
such a way that the material behaviour is described through
differential permeabilities. Consequently, the basic unknown for
the FEM becomes the time derivative of the vector potential.
The drag force is obtained by using the Maxwell stress tensor.
Simulations were carried out in which a sample was moved back
and forth through the field of one or two permanent magnets.
The numerical model is validated by measurements and by
comparing the “drag force” hysteresis losses with the hysteresis
losses computed conventionally by the integral of H .dB.

I. INTRODUCTION

In the drag force method, the hysteresis loss is obtained
by measuring the drag force that arises from the forward and
backward movement of a sample relative to the strong field
of permanent magnets [1]. The distance between magnet and
sample is kept constant in time. In the calculation, the magnet
is moved to the left over the fixed sample – see Fig. 1a. To
avoid eddy currents, the movement should be sufficiently slow.

The drag force profile is calculated by a numerical time-
stepping model that uses a finite element model (FEM) com-
bined with a hysteresis model. We first focus on these two
models and then explain the whole calculation scheme.
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Fig. 1. (a) Geometry of the drag force method (not on scale) in case of one
magnet that moves over the sample to the left. (b) Implementation of the
method in the model using differential permeability. The moving magnet is
replaced by two thin magnet slices with the movement step ∆ as thickness.
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II. NUMERICAL MODEL

A. FEM with differential permeability

As there are no current sources in the problem, the classical
FEM with vector potential A – where B = ∇ × A – solves
∇×

(

1
µ
∇× A

)

= 0 or ∇× (∇×A) = µ0(∇×M). In a
problem with hysteresis, it is not possible to solve the vector
potential FE problem using the classical permeability, because
this permeability may become negative, zero or infinite. To
overcome this, the problem is rewritten in terms of the time
derivative of A. In the magnet, the equation to solve is:

∇×

(

∇×
∂A

∂t

)

= µ0

(

∇×
∂Mm

∂t

)

(1)

with Mm the magnetization of the magnet (see Fig. 1a). For
the sample, we introduce the differential permeability ¯̄µd that
relates the time derivatives of the flux density and the magnetic
field vectors B and H: ∂B

∂t
= ¯̄µd

∂H

∂t
. In the sample we have:

∇×

(

1
¯̄µd

∇×
∂A

∂t

)

= 0 (2)

The flux density at time instant tk +∆t is obtained by adding
∂B

∂t
·∆t to the previous B-value at tk. The differential perme-

ability is function of the position in the sample. Its distribution
is determined by the hysteresis model (see next paragraph)
based on the magnetic field history. As the distribution of ¯̄µd

only depends on the previous field values and as eddy currents
are not taken into account, the FEM is static.

B. Preisach hysteresis model in FEM

The differential permeability ¯̄µd is described by the classical
scalar Preisach model [3]. For the studied material, an Everett
map is generated by measuring a high number of hysteresis
loops in a single sheet tester. For a sequence of scalar H

values, the corresponding differential permeabilities are cal-
culated by the derivatives of the Everett map [4]. All relevant
minima Hmin and maxima Hmax are stored in memory. This
hysteresis model is combined with the FEM. To handle the
2D-behaviour of the magnetic field vector H, the following
approximation is considered. As in the drag force method with
configuration of Fig. 1a, the field is mainly along the x-axis,
the scalar hysteresis model is applied only to the x-component
of H. For Hy, a nonlinear characteristic without hysteresis is
used. The non-diagonal elements of tensor ¯̄µd are 0.

C. Time-stepping procedure

After the initialization procedure in Fig. 2, the magnet is
moved backward and forward. During the corresponding time
stepping procedure, tk = tk−1 + ∆t, k = 1, 2, 3, . . ., equation
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Fig. 2. Scheme of the numerical model

(1) must be solved at each time point k. At time step k,
the magnet is slightly moved over a distance ∆. Here, the
movement of the magnet results in two subregions with width
∆ where ∂Mm

∂t
6= 0. These two subregions are defined by the

position of the magnet at time point k − 1 and time point k –
see Fig. 1b. As dynamic effects are not taken into account, we
may take for simplicity ∆t = 1. Hence, for the 2 subregions
in Fig. 1b, ∂Mm

∂t
becomes Mm 1x and −Mm 1x respectively.

The distribution ¯̄µd in (2) in the sample at time tk is found
by the hysteresis model using Hk−1 and previous extrema.

The FE problem is solved resulting in the solution ∂A

∂t
and

∂B

∂t
= ∇ × ∂A

∂t
. The flux density Bk = Bk−1 + ∂B

∂t
· ∆t

is updated. Now, Hk = Hk−1 + 1
¯̄µ
d

∂B

∂t
· ∆t and ¯̄µd(Hk) are

updated iteratively. Finally, the drag force at time k is obtained
by integrating the Maxwell stress tensor applied to Hk along
a path in the air surrounding the sample at a small distance.

We define a trajectory of motion during which the magnet
is moved backward and forward with constant speed and
for which the start and the end position of the magnet are
the same. The hysteresis loss can be obtained by the energy
balance:

∮

traject

Fx · dx =

∫

V

(
∮

loop

H · dB

)

dV (3)

The work done by the drag force Fx along the trajectory
of motion is equal to the conventional losses integrated over
the whole volume of the sample. Consequently, (3) allows to
estimate the hysteresis losses in the sample by measuring the
drag force Fx.

III. EXPERIMENTAL VALIDATION AND CONCLUSION

Simulations were carried out for the geometry of the ex-
perimental setup [1] in which one NdFeB permanent magnet
was moved back and forth over a sample of 1.6 mm thickness.
The magnet is positioned as in Fig. 1a. Fig. 3a shows the drag
force profile during the movement, and the arrows indicate the
movement direction of the magnet. Fig. 3b shows the same
profile as a function of the magnet position. The corresponding
B − H behaviour in the center of the sample is shown in
Fig. 3c. Initially, the magnet is at the right of the sample in
position (1). The dotted line in Fig. 3a and b shows that Fx

in N per meter length in z-direction becomes high (264 N/m)
as the magnet is moved to the left, comes closer to the 15 cm
long sample and attracts it. Then, the force profile becomes
more or less flat up to position (2). Fig. 3c shows that the
considered point (the center of the sample) is magnetized until
saturation and back to a negative H in (2). Now, the movement
direction is changed and we follow the solid line along (3) to
position (4). The force is higher due to hysteresis. Finally, the
movement direction is changed again. The sample is brought
back to position (5)=(2), see Fig. 3b. The area enclosed by the
solid line in Fig. 3b indicates the hysteresis loss. The method
is validated numerically by checking the equality of both sides
of eq. (3). The correspondence was good.

Similar to the experiments in [2], also simulations were
done with two magnets, symmetrical to the y = 0 plane. The
calculated drag force profile is similar to the experimental one
shown in [2], with the advantage that the huge normal force
component Fy (547 N/m) appearing in the one-magnet setup
is cancelled.

The full paper will describe a four-magnet configuration.
The two extra magnets magnetize in opposite direction, so
that the hysteresis loops range from −Bsat to +Bsat, while
the one and two magnet configurations achieve +Bsat only.
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Fig. 3. (a) Calculated force profile with indication of the magnet movement
direction, (b) force profile as a function of the position of the sample relative
to the magnet and (c) corresponding hysteresis loops in the sample center.
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