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Abstract. In this paper we present two kinds of procedural semantics
for privative modification. We do this for three reasons. The first reason
is to launch a tough test case to gauge the degree of substantial agree-
ment between a constructivist and a realist interpretation of procedural
semantics; the second is to extend Martin-Löf’s Constructive Type The-
ory to privative modification, which is characteristic of natural language;
the third reason is to sketch a positive characterization of privation.

1 Introduction

The verbal agreements between constructivist/idealist and platonist/realist se-
mantics are so numerous and so striking that it is worth exploring the extent
to which there is also substantial agreement. This paper explores some of the
common ground shared by the Constructive Type Theory of Per Martin-Löf3

and the realist Transparent Intensional Logic of Pavel Tichý.4 We focus here on
the following common features:

– a notion of construction;
– a functional language;
– a typed universe;
– an interpreted syntax.

These four features are sufficient to underpin a neutral notion of procedural
semantics. Phrased in neutral terms, linguistic meaning is construed as an ab-
stract procedure, of one or more steps, delineating what operations to apply to
what operands in order to obtain a particular product as its outcome. Since
? Postdoctoral Fellow of the Research Foundation - Flanders (FWO). Affiliated Re-
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the interpreted syntax is susceptible to type-theoretic restrictions, the range of
admissible combinations of operations and operands is accordingly constrained.
These procedures are structured constructions, each of whose constituents is an
abstract object of a particular type.

In this paper we apply the procedural semantics sketched above to the pro-
blem of privative modification. We do this for three reasons. The first reason is
to launch a tough test case to gauge the degree of substantial agreement; the
second is to extend Martin-Löf’s Type Theory to privative modification, which
is characteristic of natural language; the third reason is to sketch a positive
characterization of privation.

Property modification in the Montagovian tradition is a function from pro-
perties to properties.5 If M is a modifier and F a property, then (MF ) is the
property formed by applying the function M to the argument F . Thus, (MF )a is
the predication of the property (MF ) of the individual a. The sentential schema
whose semantics we wish to study is

“(MF )a”.

The interpretation of this schema in a procedural semantics depends on the
appropriate explanation of what M , F and a are, and of what logical procedures
are involved in modification and predication.

A full semantic theory of modification must be able to account for the fol-
lowing variants:

– Subsective: (M ′F )a ∴ Fa;
– Intersective: (M ′′F )a ∴ M∗a ∧ Fa;
– Modal/intensional : (M ′′′F )a ∴ Fa ∨ ¬Fa;
– Privative: (M ′′′′F )a ∴ ¬Fa.

The first variant is easily treated in a type-theoretical procedural semantics
by standard subset formation, extending the language with quantifiers and λ-
terms, and forming ordered pairs 〈M,F 〉 where F is the functional argument
of the function M whose functional value is the modified property (MF ). The
path from function and argument to value consists in deploying the operation of
functional application. The second variant is less straightforward, as it requires
a rule for replacing the modifier M by the property M∗.6 Our conjecture, in the
absence of obvious counterexamples, is that whenever “Fa” is an expression in a
mathematical or logical theory, (MF )a is exhausted by subsective modification,
whereas for F an empirical property and a a person or an artifact, privative
modification is unavoidable. In general, any semantic theory of mathematical and
logical language must come with an account of modification, since the premise
(M ′F )a contains the modifier M ′.

Two examples to fix ideas:

“a is a prime number”
5 See [13].
6 See [1], §4.4, [6]. The third variant will not be considered here. See [7] for discussion.



where prime is a modifier of the property number ; and

“b is a large elephant”

where large is a modifier of the property elephant. In the first example, we con-
sider the least controversial kind of subsective modification, which goes along
procedurally with subset formation: given a set of (natural) numbers, the modi-
fication of the property of being a number generates the subset of those numbers
that have the additional property of being prime numbers.

In empirical languages, we not only have examples like “b is a large elephant”,
but also cases of privative modification, of which the following would be typical
examples:

“b is a forged banknote”;
“b is sham jewellery”;
“b is a false friend”.

According to its definition, privation merely indicates what something is not,
namely not an F . We do not maintain that privation is the converse operation
of subsection, and it would be too strong for the constructivist to hold that
privation produces the complement of the property F (because there are no
such types as not being an F or being a non-F ). Instead our thesis is that for
the constructivist privation is an extreme case of subsection. Given a set of
F ’s, privation will generate the null set of F ’s; yet, while forming the null set
of a particular property exhausts the logic of privation, its semantics is richer
than that. Though both forged banknotes and railroads, say, are not banknotes,
there is an intuitive sense in which forged banknotes are somehow ‘closer to’
banknotes than are railroads (or tea mugs or tax forms, etc.) The challenge is to
make explicit what this (incomplete) approximation comes down to, which is to
say something positive about what properties do define forged banknotes (etc.).
Semantically, the quest is for a definition of what it is that banknotes and forged
banknotes have in common. The philosophical idea which in our view ought to
inform any definition of (forged F ), say, is that being a forged F is as good a
property as any. Hence, a procedural semantics needs to show a way of generating
such a property: a constructivist semantics needs to have a way of verifying
whether a particular individual has the property of being a forged banknote, and
a platonist theory must be able to define the proper subset of the complement of
any set of banknotes, such that the elements of that subset are forged banknotes.
To do so, we characterize a privatively modified property (MF ) as having some,
but not all, of the properties defining F . So there is going to be a range of forged
F ’s, such that those sharing more of those properties are closer approximations
to F . This idea induces a sequence of properties G1, . . . , Gn jointly defining
F ; the more Gi are satisfied, the closer the approximation to F . Those forged
banknotes that satisfy most Gi are virtually indistinguishable from banknotes,
whereas those satisfying few are shoddy imitations (paper instead of polymer, or
vice versa, wrong format, wrong colors, etc.). Still, a very poor forged banknote



will nonetheless share more defining properties with a banknote than will a
railroad or a tea mug.7

What is wanted, overall, is a philosophically motivated and technically work-
able account of privative modification interpreted within a basic neutral for-
mulation of procedural semantics. In particular, it must be shown what the
type-theoretically constrained procedure for predicating a modified property of
an individual looks like. In order to obtain such a technical result in the pro-
cedural semantics germane both to the constructivist and the realist approach
to type theory, we have recourse to a procedure for subset formation. We then
generate an appropriate procedure for privative modification by, accordingly,
characterizing one form of subsective modification. However, Martin-Löf’s and
Tichý’s respective theories will, in the final analysis, provide partially diverging
accounts of such a procedure.

To sum up, this paper pursues two strands, one methodological, the other
problem-oriented. The semantic problem is to provide a procedural account of
privative modification in terms of subset formation. The methodological one
concerns two different forms that a procedural semantics may take, namely the
constructivism of Martin-Löf’s Type Theory and the platonism of Tichý’s Trans-
parent Intensional Logic. The paper seeks to advance the research both on an
ill-understood topic in semantics and the general debate of realism vs. anti-
realism.

2 Procedural Semantics for Privative Modification

Both theories start from a notion of construction, which extends to function
formation. While both operate within the confines of a typed interpreted syntax,
the respective type theories work in different ways. Martin-Löf’s type theory
assigns a new type to each new property, laying down how to verify whether an
individual has that property, whereas Tichý’s type theory assigns the same type
to all empirical properties of individuals. Consequently, the respective procedures
for constructing a modified property are also going to differ.

7 We disregard the forger’s intention to produce forged banknotes. We realize that by
disregarding the intentions of someone designing and manufacturing technological
artifacts and confining ourselves to physical properties, we are guilty of a philosoph-
ical simplification. Logically, however, a property along the lines of being intended as
a forged 100-euro banknote can be smoothly added to the list of properties jointly
defining being a forged 100-euro banknote. Another simplification is the absence of
a priority relation over the properties jointly defining the modified one. Clearly, a
real-life account of modification will discriminate between the properties that are
more or less relevant to the modified property. For instance, that a forged 100-
euro banknote has got the watermark right may be more relevant than getting the
code number wrong. Note that in a procedural semantics like Constructive Type
Theory that comes with dependent types, assumptions for hypothetical judgements
are normally prioritized: the present formulation is therefore a simplification where
presuppositions and assumptions are all introduced at the same level of relevance.



2.1 Construction

On the constructive interpretation, predication starts by laying down all the
necessary and sufficient conditions for a judgement of the form F set (or equi-
valently F prop, on the props-as-sets identity) to be formulated: such a type
declaration is justified in terms of a judgement f : F that shows a constructor
for that set, and an equality judgement f = f ′ :F , to ensure canonicity for that
element. The basic formal expressions of the theory are the standard categorical
judgements

f :F
f = f ′ :F

with F set being the appropriate type declaration. From categorical judgements
of the form f :F , one extends the language to hypothetical judgements as for-
mulae of the form F ′ set[x :F ] which can be understood as a relation between
types, corresponding to functional abstraction. The justification of such a form of
judgement is given by saying that F ′ is a type whenever an appropriate substitu-
tion is performed by a certain canonical constructor f in the type F . Dependent
judgements are generalised to an arbitrary number of assumptions contained in
contexts (within brackets):

f :F [f1 :F1, . . . , fn :Fn]
f = f ′ :F [f1 :F1, . . . , fn :Fn]

where again each Fi is declared a type in an appropriate way. The theoretical
starting point of Martin-Löf’s type theory is, therefore, the justification of a
typed formula in terms of its instance and the reduction of truth-conditions
to assertion-conditions. Formation – with corresponding equalities – is the first
computational rule for types; rules are completed by:8

– introduction rule, to introduce canonical elements of types with equality;
– elimination rule, to prove a property for a previously typed element.

As with Martin-Löf’s, Tichý’s theory construes procedures in a functional
fashion. Its syntax is provided by the λ-calculi, but the semantic interpretation
of it is explicitely procedural in nature.9 The procedural aspect of Tichý’s theory
is given by the fact that the λ-terms of application and abstraction do not denote,
respectively, the result of applying a function to an argument or arranging two
sets of entities as functional arguments and their values. Rather, in TIL, they
denote, respectively, the very procedure of applying a function to an argument
and of forming a function. The procedure of application is called Composition in
TIL and is encoded thus: [X0X1 . . . Xn], where X0 is a construction of a function,

8 Cf. [11], p.24.
9 However, especially the rules pertaining to β-conversion are susceptible to various

constraints. See [1], §2.7 for the details of TIL as a hyperintensional, partial, typed
λ-calculus.



X1, . . . , Xn constructions of its arguments and [ ] the procedure of functional
application. The procedure of abstraction is called Closure in TIL and is encoded
thus: [λx1 . . . xnY ], where x1, . . . , xn construct arguments, Y constructs values
of a function and [λx1 . . . xnY ] is the procedure of functional abstraction.10

2.2 Functional Language

The functional extension of CTT is crucial to expressing implicational and quan-
tified formulae. If F is a type, the construction of a new type is possible by
considering F ′ a family of sets over some x :F , such that F ′[x :F ] is also a type.
A function can, therefore, be construed as the judgement regarding a certain
object F ′ type based on the prior judgements for a type F , possibly generalized
to more types (we skip here identity on types and objects of types):11

F set[x :F ′]
Function Formation

(x : F ′)F : set

f :F [x :F ′]
Function Introduction

(x)f : (x :F ′)F

f :F [x :F ′] f ′ :F ′
Function Elimination

f(f ′) : F [x/f ]

The neutral formulation (MF )a of an individual a instantiating the modified
property (MF ) is constructively expressed as a function M such that for every
element x in the set F taken as argument, it returns a function M(x), formally
M(x)[x : F ]. To preserve the functional aspect of M in the constructive nota-
tion, we will refer to M(F ) type as the modified type satisfied by some f :F ; this
means that the individual a from the original notation correpsonds to a typed
element in F , expressed by a judgement of the form f :F , hence it will suffice to
translate the modifier M into a function on f , so that (MF )a will be expressed
by M(f). Standard modification of a property M(F ) is given, therefore, by func-
tional abstraction and it produces subset formation {x :F | M(x)}. The case of
privative modification is no exception to this general interpretation: a privative
modifier will still take as arguments elements in a basic type F , hence the oper-
ation occurs at the level of extensions. It differs from a standard functional type
(and standard subset formation) in that it does not define a set of individuals of
the basic type, because its arguments no longer instantiate the original property
F . Rather, the range of this modifier will consist of functions from the basic type
10 Two other constructions are Trivialization and Variable. Trivializations can be dis-

pensed with here, since we do not need to mention constructions; we only use them
to obtain the entities they construct. For now, think of variables as one-step pro-
cedures for obtaining an entity relative to a sequence of assignments of entities to
variables. See [1], §§1.1-1.3.2, §2.6.1.

11 See [17], §1.7.



F to the empty set. This shows that constructive privation represents a special
case of standard subsection, specified by requiring extra conditions. That the
range of the privative modifier is a set of functions of the appropriate type –
rather than individuals – can be seen as introducing a type of higher order. The
bottom-up approach characteristic of the constructive philosophy is preserved,
so that the Introduction Rule uses a construction f :F as a premise to define a
privatively modified F in terms of the empty set of F ’s.

The functional language of TIL is cast within a ramified type hierarchy en-
compassing a simple type theory, relative to which each entity of the ontology
of TIL receives a type. The entities are organized into a bi-dimensional typed
universe. One dimension is made up of non-constructions, the other of construc-
tions. On the ground level of the type hierarchy there are non-constructional
entities unstructured from the procedural point of view belonging to a type of
order 1. Given a so-called epistemic (or, equivalently, objectual) base of atomic
types (o-truth values, ι-individuals, τ -reals doubling as times, ω-possible worlds),
the induction rule for forming functional types is applied: where α, β1, . . . , βn are
types of order 1, the set of partial mappings from β1 × . . . × βn to α, denoted
‘(αβ1 . . . βn)’, is a type of order 1 as well. Constructions that construct entities
of order 1 are constructions of order 1. They belong to a type of order 2, denoted
‘∗1’. The type ∗1 together with atomic types of order 1 serves as a base for the
induction rule: any collection of partial mappings, of type (αβ1 . . . βn), involving
∗1 in their domain or range, is a type of order 2. Constructions belonging to a
type ∗2 that construct entities of order 1 or 2, and partial mappings involving
such constructions, belong to a type of order 3 ; and so on ad infinitum.12

Tichý’s theory of modification proceeds, therefore, in a strictly top-down
manner. First, a modified property is constructed according to the procedure
of functionally applying a modifier M to a property F , and only then is the
modified property (MF ) predicated of an individual a.13 What gets predicated
of an individual is, strictly speaking, an extensionalized property, which is a
function from individuals to truth-values.

An intensional entity is any function (mapping) whose domain is in the logical
space of possible worlds. For most purposes, TIL takes an intension to be a
function from logical space to a function from times to entities, in the manner
well-known from possible-world semantics enriched with temporal parameters.
Thus, an empirical property of individuals is a function from logical space to
a function from times to sets of individuals, where a set of individuals is a
characteristic function from individuals to truth-values. Hence, given a particular
world/time pair 〈w, t〉, it is either true or false that a given individual a is a
member of the set that is the extension of the property at 〈w, t〉. Formally, the
type of a property is (((oι)τ)ω), abbreviated ‘(oι)τω’. The TIL abbreviation of
a modified empirical property being predicated of an individual will be of the
form λwλt[[MF ]wt a].

12 See [1], §1.3.2.
13 Note the contrast with the constructivist approach, where a modified property is

obtained via application rather than abstraction.



2.3 Interpreted Syntax

The procedural way of generating privatively modified properties is based on the
fact that the type-theoretical syntax is interpreted.

Constructive Type Theory can be seen as one of several foundational systems
for predicative constructive mathematics,14 but its additional value is repre-
sented by a meaning theory which extends and refines the Brouwer-Heyting-
Kolmogorov interpretation of intuitionistic logic.15 CTT formalizes a proper
theory of reasoning and knowledge, an interpreted system whose objects are
equipped with meanings.16 By implementing the Curry-Howard isomorphism,
types are intended as polymorphic categories of predication, carrying an inter-
nal meaning that can be made explicit in terms of propositions (for which proofs
are the appropriate constructors) or sets (correspondingly constructed by their
elements). The fact that types represent meanings can be adapted to the inter-
pretation of natural language semantics,17 where reference is generally construed
as the relationship between nouns or pronouns and the objects that are named
by them. In a constructive procedural semantics every object comes embedded
within its meaning category, by which a type gains its meaning from its construc-
tor, and the constructor is meaningfully expressed whenever accompanied by its
type (“no entity without a type”).18 As a result, any expression occurring in one
of the computational rules comes embedded with types that yield meanings, and
each meaning category is reduced to the corresponding syntactical construction
procedure.

The syntax of TIL (its formal ‘language of constructions’ in which construc-
tions are encoded) is inherently interpreted because both constructions and the
entities they construct cannot be introduced without typing them first.19 A
semantic analysis of a piece of language executed in accordance with TIL pro-
ceeds along the following three steps.20 First, type-theoretic and logical analysis:
all and only logical entities (operations and their operands) being denoted by
sub-expressions occurring in the overall expression under analysis receive a type,
which may be drawn from the simple or ramified type hierarchy. Second, synthe-
sis: the constructions of the entities mentioned are executed in accordance with
the logical operations made explicit by the logical analysis in order to unveil the
entity denoted by the overall expression. Third, type checking : by means of an
annotated tree it is checked whether the type assignments check out.21

14 Constructive set theory, explicit mathematics and predicative topos are other exam-
ples of systems of constructive matematics.

15 Cf. [10], [11], [17], ch.1.
16 Cf. [17], ch.1.
17 See [21].
18 See also [16].
19 See [1], §1.5.1, §2.1.2.
20 See [1], §2.1.1.
21 See [9] for details.



3 Constructive Privative Modification

Standard subsets are used in the type-theoretical setting in order to express a
type that is defined by comprehension in the range of another type. Construc-
tively, this corresponds to nothing other than a propositional function from type
F to another type F ′, i.e. function formation from sec. 2.2, requiring the def-
inition of the type in terms of the judgement F : set[x : F ′] with an equality
judgement defined on it. The appropriate introduction rule corresponds to func-
tional abstraction (x)f :F (x :F ′) and it is equivalent to Church’s λ-abstraction.
To know that the preceding rule is correct, the judgement f(f ′) :F [x/f ′] must
be obtained by function elimination, showing an object of the type F which
satisfies also the subtype F ′, a typed version of β-conversion.22

Let us generalise and consider our subtype as M for ‘modifier’; in this way
one obtains the subset of elements in F satisfying M :

F set M(x) set [x :F ]
Standard Subset Formation Rule{x :F |M(x)} set

By the side condition on canonical elements, if f = f ′ and M(x) is true for
some x :F , one obtains equal canonical constructions of the set {x :F | M(x)}
when f or f ′ is used as input of M . That is, since every propositional function is
extensional in the sense that it yields equal types when applied to equal elements,
it follows from f = f ′ :F and M(x) set[x :F ] that M(f) and M(f ′) are equal
types. Consequently, from the requirement that M(f) be true, we immediately
get that also M(f ′) is true.

The use of subset formation for an arbitrary property F (e.g. banknote) and
a privative modifier M (e.g. forged) is not entirely correct, however. To preserve
the constructive interpretation also for the case of privative modification, it is
required that the meaning of M(F ) set be given by some (canonical) M(f). By
using standard subset formation, the modifier type M will yield a subset of the
set of canonical F ’s. Since a privative modifier M is intended as a modification
procedure that changes entirely the range of its input, an alteration is needed.
Because a forged banknote is not a banknote in the first place, the privative mod-
ifier forged cannot be interpreted as a propositional function from the canonical
set of banknotes to one of its (canonical) subsets. For this reason, one needs to
define privative modification as an extreme version of subsection. The obvious
intuition is that the basic argument F set needs to be modified whenever used as
an input of the privative modifier M in a way that allows us to turn every x :F
into an element of the function from F to the empty set. The first step towards
obtaining such a procedure is to define appropriate constructions of the empty
set and of the function from a set to the empty one, returning the empty set
of elements in that set. The empty set is introduced by declaring the following
constants:23

22 See [17], §1.8. For an analysis of functions and types and the reference of abstract
terms, see [18].

23 Cf. [15], p.21.



{} :set;
case{} :El(Z(x)) [Z : ({}) set, x :El({})].

The first constant simply declares the collection with no elements to be a set; the
case step gives the empty set of Z’s elements, by applying a set Z to any element
x on condition that Z be an element of the collection of empty sets, and x an
element of any set in that collection. Both of these constructions are crucial to
the formulation of the privative modifier M . The idea is to use a canonical type
declaration F set and to apply a modifier M to any x :F , under conditions that
x :El({}) and F :El({}) set. By this, we do not mean to construct (in the stan-
dard way) an arbitrary empty set, nor to show a (constructively inadmissible)
canonical element for not-F . For the canonical constructive empty set does not
allow distinguishing among different empty sets (which is what we need, if we
interpret privative modification as a construction of the empty set); and there is
constructively no way to give a definitional procedure for a negative type such as
the set of non-banknotes, because its conditions cannot be canonically specified,
in case such set should include everything that does not satisfy the conditions
for being a banknote. Instead, we give the appropriate assertion conditions for
a function that takes any element in the set of banknotes to the complement
of such a set, because in this case it is completely specified what the conditions
for its input are, and the function only requires that those conditions remain
(entirely or partially) unsatisfied. Formally:

Privative Subset Formation Rule

F set M(x) set[F : (El({})) set;x :El(F (f))]
{x :F |M(x)} set

This construction defines a function M over the set F ; the result is not a canoni-
cal subset of F , for given any x in F as its input, M(x) returns a set of functions
to the empty set. The apparent mismatch between F in the first premise and
its occurrence in the context of the second premise is easily explained: the first
premise declares a type which, by the given case formation rule for the empty
set, is taken as valid input for the type of elements in the empty set and used
as a condition for the second premise. In the latter, F (a function) is employed
as the argument of a function application rule: namely, M is the function and
x :El(F (f)) gives the input. Nothing needs to be said explicitly about M , pro-
vided the needed information is contained in the context under which M is a
valid construction.24

24 We consider El({}) in the second premise as not entirely arbitrary, instead it contains
an object of the type F defined by the first premise: hence one might require that f be
not only an arbitrary object in {}, but, more specifically, an object in the set {x :{} |
F (x)}. This makes any (standard) restriction over F impossible. The second premise
needs to be taken conditionally, where its conditions are not meant to be interpreted



When the Privative Subset Formation Rule is applied to the example of forged
banknote, one starts from the set of banknotes and, by applying the appropriate
conditions on that set, one wishes to obtain the empty set of banknotes:

banknote set forged(x) set[banknote : (El{}) set; b :El(banknote(x))]
{x :banknote | forged(x)} set

It is essential, therefore, to operate with typed empty sets.
Privative modification treated as output of the empty-set function lays down

the distinction between the output of M(F ) – for M some privative modifier
like forged and F an argument, e.g. banknote – and any other empty set: what
is the difference between constructing the empty set of banknotes in terms of
the set of forged banknotes and any other way of constructing a set none of
whose elements is a banknote? This problem is constructively solved by putting
forward an appropriate equality rule governing M(F ) with respect to the set F :

Equality Rule on Sets

F set F = F ′ set M(x) set[F = F ′ : (El{}) set; f :El(F = F ′(x))]
{x :F = F ′ |M(x)} set

By this rule, for any equivalent set taken as argument of the modifier, the same
empty set is obtained. For any set G with its own constructor g 6= f : F the
modifier M(x) set[x :G] shall return a different empty set (namely, the empty
set of G’s, different from the empty set of F ’s). This obviously allows defining
the difference between M(F ) (forged banknotes) and G (railroads, say) as empty
sets of banknotes in a different sense: the former will, strictly speaking, be the set
of function constructors from the set of banknotes to the empty set; the second
set will contain no constructor of the set of banknotes at all, hence being empty
with respect to any such individual.

The introduction rule instantiates the procedure which, starting from a typed
object, returns a privatively modified one:

Introduction Rule

f :F m :M(f)[F : (El{}) set; f :El(F (f))]
f :{x :F |M(x)}

in terms of subsection. The context in which the modifer M is applied to f requires
that F be an element in the collection of empty sets; then, f is declared one arbitrary
element in this empty set, and finally the set obtained by functional application
F (f) is considered. This gives the empty set of F ’s, restricting all arbitrary elements
of the empty set to those obtained by only considering functions from fs to the
definitional set, in turn declared empty. The formulation of the second premise is
therefore conditional on the requirement of an empty set F , and that whenever we
consider an M(f) we know it leads to an empty set of F ’s. The crucial point is
precisely not to introduce a subset of F ’s, but a set of functions satisfied by an
empty argument.



where F can be taken to be the set of banknotes and f an instance of that set,
and M the modifier forged .

In the introduction rule one starts from the premise that a canonical element
f in the set F is given; provided M(f) is true, i.e. there is a canonical element
m of the set of functions from F to the empty set, we know that f will yield
a canonical element in the set of modified F ’s when taken as the argument of
the empty-set function of M(F ). By the associated equality rule, if f = f ′ are
elements in F , and if there is an m such that M(f) is true, f and f ′ will yield
canonical elements in the set of modified F ’s; and from f = f ′ :F and m :M(f)
it follows that m :M(f ′). Notice that according to the constructive requirement
on the introduction rule, in order to form the set of modified F ’s, one needs to
know at least one instance m :M(f), and because the latter relies on a function
applied to f , it is a further presupposition that f be known. For example, in the
case of forged banknote, in order to display or recognise a forged banknote one
needs to be able to lay down the conditions for knowing what a banknote is.

The set of rules is rounded off by an appropriate elimination rule, which
makes one able to specify how to extract a modified property from its correspon-
ding set. Formulating an elimination rule for the subset theory is a notoriously
difficult matter. It is impossible to give in constructive type theory an elimina-
tion rule that captures the way one has introduced elements in a subset, because
there is no explicit construction of the element m :M(f) for a standard subset
{x : F | M(x)}.25 In the case of privative modification, the elimination rule is
supposed to formalise the procedure which, starting from an element of a pri-
vatively modified property (forged banknote, say), will return another modified
element defined over the former; this means that variables will occur bound in the
second construction. The informal meaning of the elimination rule is to enable
positive predication for privatively modified entities. Saying that a banknote can
be identified by ascertaining that it reacts to ultra-violet lamps emitting light
at around 365 nanometres26 can be rephrased by saying that a forged banknote
will fail to react to uv-lamps emitting light at around 365 nanometres; similarly,
one may want to state of a false friend that he or she is a seasoned liar, or that
sham jewellery is an “abomination [. . . ], a lie, a pretension”.27 In the following,
let ∆ abbreviate the conditions on a privatively modified set as given by the
second premise in its introduction rule. In the corresponding elimination rule,
one starts from an instance of a privatively modified property M(f) satisfying
x :{f :F |M(f)[∆]}; then, another function f ′(x) of type M ′(x); by substituting
f in the free occurrences of x in M ′(x), one concludes that f ′(f) is an element
of the newly modified type M ′(f):

25 Cf. [22] for a full explanation, the solution proposed and the consequences for the
deductive power of the theory.

26 Pamphlet of the Bank of England, downloadble at http://www.bankofengland.co.
uk/banknotes/kyb_lo_res.pdf.

27 From the Routledge Manual of Etiquette, 2007, p. 175.



Elimination Rule

f :{x :F |M(x)[∆]} f ′(x) :M ′(x)[x :F,m :M(x)]
f ′(f) :M ′(f)

3.1 Degrees of Modification

Standard typing rules do not as yet say anything relevant about the sense in
which modification comes in degrees, given that there are different sorts of forged
banknotes. For example, in the light of a description of a banknote as a green
piece of polymer with a hologram printed on it, there are different ways in which
a forged banknote may be forged: it may be a piece of polymer which is either not
green or lacks the appropriate hologram, or it can be a green piece of something
other than polymer with or without a hologram printed on it. All in all, an
individual that lacks all three properties fails to qualify as a forged banknote.
We shall explain these differences by introducing a formal notion of degrees of
modification.

The use of dependent types has been shown to be crucial to the definition of
the subset formation rule, both in its standard format and its privative variant.
We want now to make a dependency relation explicit also for the argument of the
modifier function, which will make it possible to differentiate among privatively
modified F ’s. Take

F set[x1 :F1, . . . , xn :Fn]

to be the formal way of saying that F is a canonical set whenever each xi :Fi is
a type-theoretical expression satisfied by an appropriate element [xi/fi], where
each Fi is a definitional property of F .28 The rule for defining the privative
modifier can be analytically formulated with respect to its application to the
definitional properties Fi of F :

Dependent Privative Subset Formation

F set[x1 :F1, . . . , xn :Fn] M(x) set[Fi : (El{}) set;x : El(Fi(x))]
{x :F |M(x)} set

28 In the present treatment of type-theoretical predications, we are referring to standard
types requiring a finitistic formulation of a dependency relation from a context of
assumptions. In [12], a non-standard extension of intuitionistic type theory with
infinite objects was introduced, which represents a generalization of the finitistic
frame, relying on the latter for justification. The negation of predicates at one stage
or more in the infinite dependent structure of contexts can be formulated in that
frame in a way that resembles the notion of unsatisfied conditions introduced here.
As mentioned in the Introduction, we are relying on the simplification that elements
in the dependency context come without any priority relation.



where 1 ≤ i ≤ n. This new rule says that M(x) is a modified F in view of the
empty set of Fi, for every

∨
Fi ∈ F up to

∧
−1 Fi defining F , that is by privation

with respect to some – up to all bar one – of its definitional properties.
Depending on the selection and combination of Fi, one obtains different de-

grees of modification. A standard recursive definition of the factorial of the inte-
ger n29 is used in the following for the standard combinatorial result of d elements
extracted from n.30 In the following we shall use n to indicate the number of
Fi occurring in the dependency context of definitional properties of F , so that
we shall call the degree d of modification M of a property F the number of n
definitional properties of F with respect to which a privative modifier is applied.
By the combinatorial result, the following can be easily stated:

– there will be n distinct modifications of degree d = 1, corresponding to the
privation of x :F with respect to Fi for some i ∈ n in the set of conditions
for F set;

– there will be a combinatorial number of distinct modifications of degree
d = i < n in view of the rule for Cin, corresponding to the privation of x :F
with respect to the union

⋃
{F1, . . . , Fi}, 2 ≤ i < n−1 in the set of conditions

for F set.

Following this rule, an individual determined by 10 properties will accommo-
date a total of 198,720 possible combinations of modification, counting all the
modifications of one property, those of two properties and so on, up to counting
10 possible combinations of modification involving 9 properties (obtained by the
calculation 3, 628, 800/362, 880 = 10). For a simple example, consider the defi-
nitional presentation of the set of banknotes introduced above, for which three
different modifications of degree 1 are possible, making forged banknotes forged
due to their being deprived of just one defining property:

banknote set[polymer, green, hologram]
forged(x) set[Fi : (El{}) set;x :El(Fi(x))]

{x :banknote | forged(x)} set

where Fi is a variable for any of the properties of being made of polymer, of
being green or of having a hologram. A modification of degree 2 would take
into account two defining properties; as a result, an instance of the following
constructor would be a forged banknote by failing to be made of green polymer
(or any other combination):

banknote set[polymer, green, hologram]
forged(x) set[Fi,j :El({}) set;x :El(Fi,j(x))]

{x :banknote | forged(x)} set

where again Fi,j instantiate two defining properties.

29 n! = 1, if n = 0 and n(n− 1), if n ≥ 1.
30 Cd

n = n!/d!· (n− d)!.



3.2 Iteration of Modifiers

The formulation of degrees of modification enables us to make comparisons
among different instances of the same modified type. In particular, it enables
us to express, in the metatheory, that a particular modified set is at a cer-
tain degree of approximation to its original counterpart. In the case of forged
banknote, a privative modification of degree 1 will be a closer approximation
to banknote than will a privative modification of degree 2. This squares with
natural-language predicates like ‘is a well-made forged banknote’, whose use
presupposes various degrees to which a forged banknote may succeed in passing
for what it is a forgery of.

This remark leads directly to the next case we want to analyse, namely the
iteration of modifiers. The modifier well-made needs to qualify forged banknote,
otherwise one ends up with the infelicitous ((well-made forged) banknote).31

Whether well-made modifies forged banknote or forged, well-made is a subsective
modifier, and we do not want to extract well-made forged banknotes from a set
of banknotes. For the iteration to be such that, given a set of forged banknotes,
one extracts only the well-made ones, one has to be sure that the construction
of (well-made (forged banknote)) uses a correct application of different subset
formation rules.

Consider the by now well-known construction of forged banknote and let us
abbreviate again the additional conditions on the privative subsection as ∆. Now
the construction of (well-made (forged banknote)) is of the following form:

banknote set forged(x) set[∆]
{x :banknote | forged(x)} set well-made(x) set[x :banknote | forged(x)]

{x :banknote | well-made × forged(x)} set

This construction applies first the privative subset formation rule and then the
standard subset formation rule to the resulting set of functions, thus obtaining
the cartesian product of two families of functions over correctly defined sets.

On the other hand, the construction of ((well-made forged) banknote) is an
illegitimate one. The predicate ‘is a (well-made forged) banknote’ does not split
the application of the modifiers into two steps, instead the formal construction
combines via the cartesian product the standard subsective modifier and the
privative subsective modifier. The resulting construction is ill-defined because the
subsective modifier well-made has the categorical set banknote as its arguement,
whereas the privative modifier forged applies to functions defined over an empty
set:

banknote set well-made(x) set[x :banknote]× forged(x) set[∆]
{x :banknote | well-made(x)× forged(x)[∆]} set

31 Brackets are used as scope indicators. Note that if well-made is to modify forged, then
because the latter is a first-order modifier (modifying, as it does, a non-modifier),
the former must be a higher-order modifier like, e.g., very. See [6] for discussion of
higher-order modification.



A specific case of iteration of modifiers is the iteration of privative modifiers.
This kind of iteration avoids the problem of the previous case, because in both
cases the modifiers are privative, hence they share the same conditions. The iter-
ation will give the cartesian product of the sets of functions that are arguments
of the modifier. The following construction is an example of a formation rule
regulating burned forged banknote:

banknote set forged(x) set[∆]
{x :banknote | forged(x)} set burned(x) set[forged(x)[∆]]

{x :banknote | forged × burned(x)[∆]} set

Burned is privative because a burned F is not an F , though it originally was
an F . Not all pairs of privative modifiers cancel each other out, such that a
burned forged banknote would be a banknote. Furthermore, though both forged
and burned are privative, their logical behaviour does not overlap entirely. In
particular, “a is a burned banknote” is an example of resultative predication32

while “a is a forged banknote” is not. From a being a burned banknote, it follows
that a is not a banknote (because a pile of ashes does not make a banknote),
but it is presupposed that a started out as a banknote (otherwise there would
have been no banknote to burn). So burned comes with a dynamic dimension
that forged lacks: a forged banknote was never a banknote and only remains an
approximation to one.33

4 Realist Privative Modification

4.1 Predication of modified properties

A property is an intensional entity of type (((oι)τ)ω), abbreviated ‘(oι)τω’, which
is a function from worlds (ω) to functions from times (τ) to sets of individuals
((oι)). A property modifier, by contrast, is an extensional entity, because it is
not indexed to possible worlds. Instead it is a function-in-extension between two
intensions. Since a property modifier is a function that takes one property to
another, its type is ((oι)τω(oι)τω). So in order to construct a modified property,
the procedure of functional application (Composition) is called for:

[modifier property]

The predication of a property of an individual goes via two instances of func-
tional application. First, the relevant property is extensionalized so as to obtain
a set from a property. Second, the set is applied to the individual to obtain a
truth-value. The philosophical motivation is that individuals exemplify empirical

32 See [2], p. 226ff.
33 As for a being a well-made forged banknote, the degree to which a qualifies as being

well-made is a reflection of the quality of the craftsmanship of the forgery.



properties only relative to worlds and times.34 Schematically, predication is this
Closure:

λwλt [propertywt a]

This Closure, which constructs a possible-world proposition (a function from
worlds to functions from times to truth-values), would be the logical form of the
sense of a sentence like, “a is a banknote”.

The schema of the predication of a modified property of a is this Closure:

λwλt [[modifier property]wt a]

This Closure would be the logical form of the sense of a sentence like, “a is
a forged banknote” or “a is a burned banknote”.

If the property constructed by [modifier property] is itself modified, the re-
sulting predication looks like this:

λwλt [[modifier ′ [modifier property]]wt a]

This would be the form of, say, “a is a burned forged banknote” or “a is a
well-made forged banknote”. In all three cases the semantic analysis culminates
in the assignment of a propositional construction to a sentence as its sense.

4.2 The requisites of privation

True to its top-down approach, TIL accounts for a property like being a forged
banknote in terms of other properties being ‘stacked upon it’, to wit, the set of
properties that are individually necessary and jointly sufficient for an individual
to have that property. Such a set is called the essence of the property in question,
and each element is called a requisite.35 The type of a requisite, when a relation-
in-extension between two properties, is (o(oι)τω(oι)τω), while the type of the
essence of a property is ((o(oι)τω)(oι)τω): the essence function takes a property
to the set of properties that are its requisites. Formally, F being of type (oι)τω
and p ranging over the same type, these two constructions converge in the same
set of properties:

[essence F ] = λp [Req p F ]

The requisite relation is defined in the following manner. Let X,Y be inten-
sional constructions such that X,Y are first-order constructions ranging over the
type (oι)τω (i.e. X,Y are property variables) and let x range over ι.36 Then:

34 See [5] for details.
35 See [1], §4.4. Requisites play pretty much the same role as do presuppositions in

constructivism.
36 See [1] §4.1, def. 4.1. See also §4.1 for True, which is the propositional property of

being true at 〈w, t〉.



[Req YX] = ∀w∀t [∀x [[Truewtλwλt [Xwtx]]→ [Truewtλwλt [Ywtx]]]]

Gloss definiendum as, “Y is a requisite of X”, and definiens as, “Necessarily,
at every 〈w, t〉, whatever x instantiates X at 〈w, t〉 also instantiates Y at 〈w, t〉.”

Logically, privation comes down to, say, being a banknote and being a forged
banknote having an empty intersection at every 〈w, t〉. This is obtained thus:

[Req λwλt ¬[banknotewt x][forged banknote]]

We say that the property constructed by [forged banknote] has, inter alia,
the requisite property constructed by λwλt ¬[banknotewt x]. This is to say that
if, at some 〈w, t〉 or other, an individual x is in the extension of [forged banknote]
then x is in the extension of the property constructed by λwλt ¬[banknotewt x].

Hence, the proposition that not being a banknote is a requisite of being a
forged banknote is equivalent to the proposition constructed thus:37

∀w∀t [∀x [[forged banknote]wt x]→ [¬[banknotewt x]]]

What is special about the sort of non-banknote that is not a tea mug, a
railroad or a tax form, but a forged banknote? Given a 〈w, t〉, the set constructed
by [banknotewt] will have a complement in which we find tea mugs and all the
rest, including forged banknotes, but the set constructed by [[forged banknote]wt]
will be a well-defined proper subset of that complement.38 To define the notion
of the subset of forged banknotes within the set of non-banknotes, we need to
express that no forged banknote is a banknote and that some non-banknotes are
forged banknotes:

∀w∀t [[[All [forged banknote]wt][λx ¬[banknotewt x]]] ∧
[[Some [λx ¬[banknotewt x]]] λx[[forged banknote]wt x]]]

We invoke the quantifiers All, Some, here of type ((o(oι))(oι)).39 All is the
function from the set constructed by [Fwt] to the set of all those sets that contain
the set constructed by [Fwt] as a subset. Some is the function from the set con-
structed by [Fwt] to the set of all those sets that share a non-empty intersection
with the set constructed by [Fwt].

In the Introduction we argued that a forged banknote is an (intended) ap-
proximation to a banknote. We also made the (simplistic) assumption that being
green and being made of polymer exhaust being a banknote. Thus, one reason
why a may be a forged banknote is because a, though being made of polymer,

37 For the record, ‘∀y’ abbreviates ‘[0∀[λy]]’, y ranging over an arbitrary type α, ∀ a
function of type (o(oα)), and 0∀ being the Trivialization of this function.

38 See [7] for a positive characterization of the proper subset of the complement of any
set of F ’s containing forged F ’s.

39 See [1] §1.4.3.



fails to be green. Therefore, at some 〈w, t〉, a may have some, though not all, of
the properties making up the essence of being a banknote, q ranging over (oι)τω:

λwλt [[[Some λq [qwt a]] [essence banknote]] ∧ ¬[[All λq [qwt a]] [essence banknote]]

A forged banknote is any individual that is not a banknote and which is
either made of polymer but fails to be green, or is green but fails to be made
of polymer. If we add a third property, e.g. having a hologram, it becomes an
option that a non-banknote may have either one or two of those three properties
and, therefore, qualify as a forged banknote to a lower or higher degree. Degrees
of modification would be captured in TIL by spelling out which of the requisite
properties of being a banknote a given forged banknote possessed.

5 Conclusion and Further Research

Above we set out the philosophical and technical features of two different concep-
tions – one constructive, the other platonist – of what a procedural semantics for
privative modification may look like. These two conceptions of privative mod-
ification are, however, only the first step toward dealing with modification in
general within these two frameworks. Subsective and privative modification are
the easiest two of the altogether four forms of modification mentioned in the
Introduction. The modal/intensional variant, on the other hand, represents the
most challenging case both philosophically and technically. For one thing, its very
logic is far from being clear, since it is not sufficient to simply infer the classical
tautology Fa∨¬Fa from (MF )a. Future research will be devoted to extending
both Martin-Löf’s Constructive Type Theory and Tichý’s Transparent Inten-
sional Logic so as to include a worked-out semantics for intensional modifiers. In
particular, the application of CTT to intensional modification will take its lead
from [19] and [20], which present a modal type theory including syntactic rules
for defining possibility judgements made from open assumptions.40
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