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Abstract - One of the latest trends in the Internet is the
online sharing of personal flles with others. Ideally, an
online storage service, enabling access to and sharing of
vour personal content, should be available anytime,
anywhere. To realize such a service, the system should
be scalable in the number of users and files, and the
delay should be limited In order to meet the
requirements an optimized caching strategy for personal
content can be used to increase the efficiency of a
network. We discuss a caching strategy and an
evaluation of analytical and simulated results in this
paper. We extended OptorSim to obtain simulation
results. The results of the simulation and analytical
calculation closely match, implying that the simulator
can be used to observe more complex problems. The
presented approach is used for evaluating caching
strategies to increase efficiency in deploying a personal
content storage service.

Keywords: Grid computing, caching
scalability, simulations, personal content.
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1 Introduction

Using the Internet, one is able to communicate and
share information with others. One of the latest trends is
to share your personal content with other people.
Personal content typically consists of text documents,
digital photos, music files, personal movies, etcetera. For
instance you can share your personal movies or pictures
on central-server architectures like YouTube [22] and
Flickr [6].

However, systems that provide the possibility to
store personal content for users still have limitations,
namely: scalability in the number of users and files, and
the delay caused by central-server architectures.
Ultimately users want to have space available to store
their personal content, where access properties of the
online storage is the same as using your own hard disk.
The main benefit of such a system is that one can access
content fast at any me and from anywhere. Another
advantage of such a system is that users can be relieved
from the burden of making backups of their precious
files.

In order to overcome the limitations caused by the
infrastructure one can use the technology of Grid
computing. Grid computing offers computational and
storage transparent way o users.

ransparency that the exact

resources i a

means

geographical

locations of the physical resources are made abstract for
users [7]. In this way one tries to increase the utilization
of underused resources, in order to enhance the
efficiency of a system as a whole.

A Grid that provides the possibility to store
personal files is called a Personal Content Storage (PCS)
Grid. Although a lot of research has already been done
into Grid technology, there has not been done a lot in
dimensioning cache sizes for a Grid that stores personal
content. This is due to the fact that Grids, at the time of
writing, are mostly used to solve large and
computationally complex problems. Most of the research
that tries to improve Grid technology tries to increase the
efficiency of the utilization of the computational
resources, thereby realizing huge savings on execution
times of computationally intensive jobs. However,
savings can also be obtained by increasing the efficiency
of data transfers. Grids that are optimized to transfer data
efficiently for computational intensive jobs are called
data Grids.

A PCS Grid differs from a data Grid, in the sense
that the latter is designed to store a set of relatively large
data files, which will typically be accessed by a few
hundred to a few thousand researchers. In contrast, a
PCS Grid will store a large set of relatively small data
files and will typically be accessed by thousands to
millions of users.

When designing such a PCS Grid, an important
question that needs answering is where files are cached
in the Grid, in order to meet the user requirements. With
data caching in the Grid, frequently accessed files can be
brought closer to the user(s) that are requesting that file
often. In this way a big part of the Grid can be relieved
and the quality of the service of the Grid will remain,
even when the number of users and files grows.

At first glance, such a caching strategy seems very
similar to caching strategies in Content Distribution
Networks (CDNY. In a CDN streaming content, which is
very sensitive to jitter and packet loss, is replicated to so-
called surrogate servers at the edge of the network in
order to tackle the performance issues of the classical
client-server-approach {3]. However, CDNs are designed
to distribute a limited amount of very popular content,
while a PCS Grid will store a huge amount of relatively
unpopular content. For such a PCS Grid, where each user
adds his/her data, storage requirements are more
important. Furthermore, guaranteeing low latency and
high bandwidth in an environment where end users each
access different files simultaneously, requires data to be
cached even closer to the end user.
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Nowadays there exists many distributed file
systems, ranging from client-server systems (e.g. NFS
[2}, AFS {9] and Coda [15]) over cluster file systems
(e.g. Lustre [4], GPFS [10] and the Google File System
[8]) to global scale peer-to-peer file systems (e.g.
OceanStore [13], FARSITE [1] and Pangaea [20]). None
of the distributed file systems enumerated above, were
designed for large-scale deployment in an access and
aggregation network environment. However,
OceanStore, for which a prototype (Pond [19]) is being
developed, seems a good candidate for this purpose. The
OceanStore’s core system is composed of a multitude of
highly connected pools, among which data is allowed to
flow freely [13]. A pool could for instance be associated
with an access and aggregation network. Most of the
time, data will be accessed from within the pool, but
when a user is traveling, his data is still accessible.
Pangaea [20], with its pervasive replication mechanism
that replicates data based on user activity, also seems a
good candidate. Data that is only accessed from within
the access and aggregation network will be kept locally.
Users on the move will trigger replication of their data in
other access and aggregation networks.

We describe a caching strategy and an evaluation
of the results in this paper. A description of the caching
strategy and the test scenario that we use is provided in
section 2. The measurements that we did with the
discrete event simulator are described in section 3.
Finally, we provide a discussion and future work in
section 4.

2 Personal content management

As stated in the introduction, this section presents a
test scenario for personal content storage. Figure 1
represents a typical (Digital Subscriber Line — DSL)
access network with a tree topology, having split s and
depth d. Users at the leaf nodes are connected to the level
one caches, the server is located at level d We assume
that sufficient capacity is available on the links.

Level d cache m

SN
"Ry
s A

Figure | Access network with a tree topology, having
split s and depth d. Users are situated at the leaf nodes
and connected to a level one cache. The server cache is
located at level &, On the links sufficient capacity is
available.

In our simulations, users make their personal files
available in the network by uploading them to the central
server. The uploaded file of a user is cached at the caches
on the path to the central server. In total, VN files with
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equal size are uploaded, on average ones every A
seconds. The number of uploads is a lot smaller than the
number of downloads. The popularity of each file is
equal at the time of upload, but decreases exponentially
afterwards. The popularity distribution of file / at time 1,
where 4, represents the initial request rate, 7 is a time
constant and 7, determines the upload time stamp of file
i, 18 given by (1):
~(~T 5)
()= 2 e (1

The function in equation (1) describes an
exponentially decreasing popularity for files, which
implies that the longer a file is in the system, the less
attractive it will be for a user to request it. When a user
downloads a file for the first time, each intermediate
cache stores that file locally and serves comsecutive
requests for that file. When a cache is full, older files are
deleted according to a Least Recently Used (LRU)
policy.

Although previous studies on proxy caching
techniques [14] or distributed replica placement
strategies for CDNs [11], [12], [17] show that greedy
algorithms that take distance metrics and content
popularity into account perform better than more
straightforward heuristics, such as LRU or LFU (Least
Frequently Used). We use the LRU algorithm to be able
to compare our analytical solution with the simulation
results.

2.1

,where/>T7,,

Test scenario

Before we present our analytical solutions our
simulation results, we have to define the parameters that
we use in our test scenario. For the parameters depth J
and split 5, we take the value four. This implies that we
have 85 cache servers in the topology and in total 64
users, where each user represents the aggregation of an
access network. Users are connected to a single level one
cache in the network.

Figure 2 shows an example of the popularity
distribution for each file, with 1, = 0.0l/s and 7 =
100,000 s.
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Figure 2: Popularity distribution 4, for a file i, with 4, =
0.01/s and ¢ = 100,000 s, assumed that the file is
yploaded at time 0. The popularity distribution is

represented as the request rate per hour against the time
in days.
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The area below the function shown in Figure 2
represents the total number of file requests that are made
for each file. This means that a total number of
<&

[2,(1)= 2y 7=1000 requests (downloads) are made

T

per file. The number of files N is set to 1,024 and each
user has an equal probability to download a file,
implying that users have no preference for a certain file.
Since we have stated that we assume there is sufficient
capacity available on the links, the file size is neglected.
Furthermore, we assume that the cache at level d has
enough capacity to store all files that will be uploaded.
The last parameter that we need to define is the inter-
arrival time between uploads A, we assume that every
hour a new file is uploaded by a random user.

2.2 Storage dimensioning

First, we present an analytical solution for the
content placement that determines the storage capacity
on each level of the network, so that the total cache serve
ratio on each level is equal. The cache serve ratio is the
ratio between the number of files served by a cache layer
and the total number of requested files. An equal cache
serve ratio implies that load is balanced for each cache
level. Afierwards, these results are compared to those of
the discrete event simulator, using the LRU caching
algorithm.

2.2.1  Analytical model

When file /i becomes available in the network at
time 7, it should be located at each of the caches on
level one, closest to the end users, so that the delay and
transport cost are minimized.

As its popularity decreases, a file will be relocated
to all caches on level two after T + £, seconds, and so
on, until the file is stored in the server at the top after T
+ ¢, seconds. To achieve an equal total cache serve ratio
for this file on each level in the tree, all (=1, 2, ..., d-
1) have to be calculated so that the total number of
requests made for that file in the intervals [To + t, Tio T

1 oo [Tip + Ly, 0] is equal, or in other words:
3 [ Ag-T i
;, ()= —ﬁ—,orzi ==t In(l-—)+ T, 2)

When the same procedure is used for ali files, each
level in the tree serves an equal total number of requests.
As we assume that in non-equilibrium steady state new
files enter the system at a (nearly) constant rate, the
cache serve rate per level is always equally distributed.

2.2.2  Analytical example

When 1,024 files are available, each with the
request rate shown in Figure 2, on a tree network with
depth ¢ = 4 and split s = 4, we find that 1, = 8.0 hours, /2
= 19.3 hours and 7, = 38.5 hours. If a constant entry rate
of one file per hour is assumed, this means that eac
cache on level one has to store the eight most recent (i.e.
most popular) files, each cache on level two the next

eleven most popular files, each cache on level three the
next nineteen files and the central server the least popular
already available files.

Doubling the entry rate doubles the number of files
on each level, the split has no influence. The solution for
different values of the depth d is shown in Figure 3.
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Figure 3: Cache size on each level expressed in number of
files, for different tree depths d, to get an equally
distributed cache serve rate per cache level. We assume
that the inter-arrival time of new files in the system is
3,600 seconds.

Since the cache server at level ¢ is assumed to have
enough capacity available to store all files, only the
cache sizes at level one till level d-1 have to be
calculated. Figure 3 shows that increasing the number of
cache levels results in a decrease of the needed cache
size at a cache level, in order to have an equally
distributed cache serve ratio. However, the sum of the
files to be stored over all cache levels increases when
parameter depth d increases.

2.3 Content distribution rate

We know, however, that in a more realistic
gituation, where an LRU caching algorithm is used
instead of an optimal dynamic replacement over all
caches of the appropriate level, the location of the files is
very suboptimal. In this section, we study the time it
takes to store one file on as many level one caches as
possible, through individual downloads. In section ‘3
Simulation and evaluation’ we compare these resulis to
those of the discrete event simulator, using the LRU
caching algorithm.

2.3.1  Analytical model

At random, each of the users at the leaf nodes sends
one of the M (= 4y - 1) requests for a file / to one of the J
(= 5"} caches located at the lowest level in the tree. We
look for the probability P[] that & of the J caches store
the requested file, after request m (m = 1, ..., M). In the
beginning, P[0] = 1, Plk+# 0] = 0. After one request (m =
1. P[11=1, P[k # 1]= 0. The probability that the first £
caches store file /, and the other J - k cache do not store
file i is given by Plk]=C].

Identify 5 (= 1, .., k) as the set of possible ways to
distribute all m requests over & caches so that cache J
remains empty. All sets 5 can be combined inio




intersections of p subsets, each with cardinality (k - p)”
to distribute m requests over £ - p caches, in Cf
different ways. Following the principle of inclusion and
exclusion [21], the number of possible distributions with
at least one cache where a file / is not stored is
represented by equation (3):

#(5,U..US) =2 #S)-2ES, NSN+.. 3)
B PO 3
=C k-1 -Crh-2)" +...

The number of possible distributions where non of
the first & caches is empty is  then

kKM -Clie-1)" + CHk-2)" - ..

In total, J" distributions (all with an equal
probability) are possible, so that the general probability
distribution of the number of caches at level one store a
file 7 after m downloads becomes:

Ch (k™ =Cl k=D +CHk=2)" =)
Jm

Plk]= 4

In the next section we use equation (4) in an
analytical example.

2.3.2  Numerical example

For the same parameters values as described in ‘2.7
Test scenario’, 64 level one caches are present and file
is requested a thousand times. A plot (see Figure 7) of
the probability distribution of the number of level one
caches storing file / after one hundred downloads for this
example is given in ‘3.2 Content distribution rate’. The
analytical result is that after a hundred downloads of a
file / on average 51 caches store file i For the
development of the number of filled caches with file
against the number of downloads we refer to Figure 8 in
‘3.2 Content distribution rate’. We notice that the
optimal situation (i.e. all caches store the particular file /)
in Figure 8 is only (almost) reached after two hundred
requests and not immediately, as we presumed in the
analytical model described in section ‘2.2 Siorage
dimensioning’.

3 Simulation and evaluation

Besides solving the problem analytically, we use a
discrete event simulator to approximate the statistics. In
[18] a number of data Grid simulators are described, like:
Bricks, SimGrid, GridSim, GangSim and OptorSim. We
use the simulator OptorSim [16], since it is an event
driven simulator and was originally designed to explore
effects of dynamic data replication in the European
DataGrid (EDG) project [5].

We use the same parameter values as described in
‘2.1 Test scenario ', this means that there are 64 level one
caches, 1,024 different files and each file is upload once
and downloaded a thousand times. For the simulation we
use the calculated optimal values for cache sizes at each
level; the level one caches have a capacity to store the
eight most popular files. the caches located at level two
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can store the next eleven most popular files and the level
three caches are able to store the next nineteen most
popular files. Since the cache at level four should have
sufficient capacity to store all files, this cache can store
1,024 files. In the next two subsections we show that the
analytically obtained results and the results obtained with
the simulator are similar.

3.1 Storage dimensioning

Since we used the analytical calculated cache size
in our simulations, we should get an approximately
constant cache serve ratio for each of the cache layers in
non-equilibrium steady state. In Figure 4 and Figure 5
the convergence of the cache serve ratios for each cache
level in relation to the number of downloads of all files,
is presented. Figure 4 depicts the first 2500 downloads
and Figure 5 shows the convergence over all downloads.

—Level 1 —Level2 —Level3  Level4
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serve ratio 04 ™
0.3
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Level 2
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0.1
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0 500

Number of downloads

1000 1500 2000 2500

Figure 4: Convergence of the cumulative cache serve
ratios for each cache level against the total of number of
downloads during the simulation. The number of
downloads depicted in this figure, is limited to 2500.

In the first 2500 downloads, you see that the cache
serve ratio of cache level four starts at 1.0 and the other
cache levels begin at 0.0, after the first download. In the
simulation a user does an upload of the file to the cache
at level four (i.e. the central server), and on every cache
on the patﬁ from the user to the cache at level four the
file is cached. When a user downloads the file for the
first time in this simulation, the closest copy of the file
was located at the cache in level four. This explains why
the cache serve ratio for level four is 1.0 after one
download.

The further developments of the cumulative cache
serve ratios in Figure 4, is that the caches at level one
mainly serve the users; this agrees with the observation
in Figure 8, Figure 8 shows that after approximately two
hundred downloads all caches at level one store file / and
thus serve the requests to file /.

The reason why the cache serve ratio for cache
layer two is higher than the cache serve ratio for cache
fevel three (and four), is that when a user downloads a
file for the first time it uses the closest replica of a file in
the system. If one of the direct neighbors (i.e. users that
share the same cache at level two) of the user already
downloaded the file, the file is available at cache level
two and cache level two gets a cache hit. The same
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explanation can be given for the difference between the
cache serve ratios of cache level two and three.

As mentioned above, Figure 5 presents the
convergence of the cache serve ratios for all downloads.

——lgvel 1 = lgvel 2 —~—level 3 Level 4

Cumulative 0.6
cache 05

serve ratic 0.4 7
0.3 ]

Levei 4

Level 3

0 500,000 1,000,000

Number of downloads

Figure 5: Convergence of the cumulative cache serve
ratios for each cache level against the total of number of
downloads during the simulation.

When the total number of downloads advances, the
cache serve ratio of cache level one decreases, since
more new files enter the system. The relative number of
older files (files that are served by cache level two, three
or four) increases, but users will still produce some
requests to these files. The same is valid for the caches at
level two and three. For these lower level caches, the
drop in cache serve ratio happens after more downloads,
since these caches store the next most popular files.
Eventually the caches at level four becomes important
when the caches at level three have no space left to store
the old files. The requests that users make to these old
files will all be served by cache level four, so the cache
serve ratio of level four will increase.

The cache serve ratio numbers of the caches at the
end of the simulation are summarized in Table 6.

Cache level Cache serve ratio

Level 1 0.2196
Level 2 0.2584
Level 3 0.2241
Level 4 0.2978

Table 6: Cache serve ratios for each cache level at the
end of the simulation.

According to the analytical example in 2.2 Srorage
dimensioning’ cache serve ratio should be equal for each
cache level. Since we have four cache levels, the cache
serve ratio should be 0.25.

The ratios of Table 6 more or less correspond to the
calculated values. The cache serve ratio of cache level
one has the lowest cache serve ratio. This is due to the
empty caches, when the simulation starts. It will take
some time, after a user uploads the ninth file, before the
first file is deleted from cache level one and further
requests to the first file are served by cache level two.
Since all requests of a user that downloads & file for the
first time is handled by a cache level other than cache
level one, cache level one misses requests that were
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assigned to cache level one in the analytical calculations.
Cache level four profits from this, which explains why
the ratio of this cache level is higher. The cache serve
ratios of cache level two and three more closely
approximate to the calculated value, despite all caches
start empty.

3.2 Content distribution rate

In this section we study the time (or number of
downloads from file /) it takes to store one file on as
many level one caches as possible, through individual
downloads. According to the analytical calculations after
one hundred downloads of file / on average 51 caches
should store file 7. This is visualized in Figure 7.

e Simulation = Analytical f
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Figure 7: Probability distribution of the number of level
one caches storing file / after one hundred downloads.
The line depicts the analytical solution of equation (4); m
= 100 and J = 64. The dots represent the measured
values, obtained from the simulation.

Besides the analytical solution, the measured values
of the simulation are also depicted in Figure 7. From
Figure 7 we can conclude that the probability distribution
obtained with the simulation confirms the analytical
probability distribution. The small difference is due to
the random number generator in the simulations.

Besides the probability distribution of the filled
level one cache with file /7 after one hundred downloads
of file i, we are also interested in the evolution (i.e. in
number of downloads) of the average number of filled
level one caches in time. Figure 8 provides this
information.
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Figure 8 Average number of level one caches that store 2
file / in relation to the total number of downloads of a file
I8
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Both the analytical solution and the measured
average number of level one caches that store a file / in
relation to the total number of downloads of a file / are
shown. The upper limit in this example is 64, since there
are only 64 level one caches present. We can conclude
that the measured approximation fits the analytical
solution. The small differences can again be explained by
using a random number generator in the simulation.

4 Conclusion

To realize a PCS Grid, the Grid should be scalable
in the number of users and files, and the delay should be
limited. In order to meet these requirements an optimized
caching strategy for personal content should be used to
increase the efficiency of a Grid. We show with a basic
test scenario on an access network with a tree topology,
that the results that we obtain with our simulator confirm
analytical calculations.

We have determined the required cache capacities
at each level of the tree network based on an analytical
model, in order to obtain an equal cache serve ratio for
each cache level. The simulation shows that the cache
serve ratios converge closely to the calculated values.

We are aware that in a more realistic situation,
where a Least Recently Used (LRU) caching algorithm is
used instead of an optimal dynamic replacement over all
caches of the appropriate level, the location of the files is
suboptimal. This is why we also studied the time it takes
to store one file on as many level one caches as possible,
through individual downloads. The measurements of the
simulation of the probability distribution of the number
of caches at level one that store a file that is downloaded
one hundred times, approximates the analytical
calculation closely.

Now that we have a simulator that is able to closely
match analytical calculations, we will use it in future
work to investigate properties and topologies for which
analytical calculations are to complex. Future work will
include studying different caching strategies, different
topologies where links have a different and limited
bandwidth, a more realistic file size distribution, and
users having preferences for some common and their
own files. Our study will lead to caching strategies where
the user experience of the online storage system will be
similar to using a local hard disk.
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