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Abstract

When aligning genetic sequences, we
have to rely on estimates of evolu-
tionary distance between sequences
and their closest common ancestor.
In practice, many alignments are
performed on short sequences, and
unfortunately, for such sequences it
is well-known that estimation of evo-
lutionary distance is subject to seri-
ous errors. Without additional in-
formation about the sequences, it
is hardly possible to improve exist-
ing estimators. This paper addresses
how imprecise probability theory al-
lows us to substantially weaken as-
sumptions about the evolutionary
distance, by using an interval rather
than a point estimate. It is shown
how under these weaker assump-
tions a good alignment still can be
found, through a generalisation of
the well-known Needleman-Wunsch
algorithm. In doing so, we rely on
an extension of dynamic program-
ming to the case where the gain is
described by an imprecise probabil-
ity model. Our approach also identi-
fies those cases in which insufficient
information is available in order to
construct a good alignment.
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1 Introduction

Aligning genetic sequences is a very widely
used and important technique in bioinformat-
ics [6]. To give a few examples, through se-
quence alignment we can determine evolution-
ary relationships among species, and in par-
ticular, we can reconstruct phylogenetic trees.
An alignment may also reveal functional re-
gions in genetic sequences. Such information
may for example lead to the discovery of new
or improved drug treatments, or may help in
deciding what treatment is best fitted for a
particular patient genotype. Sequence align-
ment is also a handy tool in predicting struc-
tural and biochemical properties of sequences.

The alignment problem is usually formulated
as an optimisation problem. Basically, posi-
tive scores are assigned to matches, and neg-
ative scores are assigned to mismatches and
gaps. These scores are summarised in what
is called a score matrix. We aim to find the
alignment with the highest total score. This
approach has two benefits: (i) it allows us to
characterise the optimal (“best”) alignment
from all possible alignments in an objective
way, and (ii) the highest score, correspond-
ing to the best alignment, provides us with
an objective measure of the quality of this
alignment. Moreover, an efficient algorithm
to calculate the optimal alignment of a small
number of sequences (say, two or three se-
quences) can be constructed through dynamic
programming [7]. In this article, we will focus
on pair-wise sequence alignment, that is, the
alignment of only two sequences.
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Clearly, aligning genetic sequences relies heav-
ily on the choice of the score matrix: how
should we reward matches, and how should
punish gaps and mismatches? In practice,
a large number of score matrices are being
used, and precise choice of the score matrix
relies on additional assumptions about the se-
quences under study. For example, when us-
ing PAM score matrices [3], on which we will
focus in this paper, the following assumptions
are made:1

• the evolutionary distance of the se-
quences to their closest common ancestor
is known,

• evolution is in an equilibrium point,

• in this equilibrium point, there is evolu-
tionary reversibility—any point mutation
is as probable as its reverse,

• point mutations at different locations in
the sequence are i.i.d., and

• point mutations at different times are
i.i.d.

Different evolutionary distances induce differ-
ent score matrices. These matrices are de-
noted by PAM(T ), where T denotes the evo-
lutionary distance between the sequences un-
der study and their closest common ancestor.

Obtaining this evolutionary distance is a ma-
jor issue in molecular evolution, especially
when comparing short sequences. Indeed,
‘estimation bias usually occurs when the se-
quence length is short so that stochastic ef-
fects are strong’ [14]. In many cases, one can
only rely on the sequences under study to es-
timate evolutionary distance—no additional
information is available.

One approach is somehow to guess the evolu-
tionary distance from the similarity of the two
sequences. Typically, PAM250 is chosen if the
sequences are 20% similar, PAM120 if they
are 40% similar, PAM60 if they are 60% simi-
lar, etc. It is however not entirely clear how in

1This is not meant to be the current state of the
art. A lot of research in molecular evolution is on
generalising these assumptions.

general similarity percentages can be derived
from two sequences, prior to alignment.

Another approach to solve the optimisation
problem not for one, but for a set of PAM
matrices, or even with different other meth-
ods, and then choose the method that returns
the highest optimal score. The performance of
different alignment methods has been studied,
and one of the interesting results that have
come out of such studies is that ‘for different
pairs many different methods create the best
alignments’, and hence, that ‘if a method that
could select the best alignment method for
each pair existed, a significant improvement
of the alignment quality could be gained’ [5].
However, in practice it is computationally un-
feasible to try out a large numbers of methods
and to tune all parameters (such as evolution-
ary distance, gap penalty, etc.) for each one
of them.

In this paper, it is investigated whether a bias
in the evolutionary distance also leads to a
bias in the optimal alignment. In particular, a
generalisation of the well-known Needleman-
Wunsch algorithm [7] is proposed in order to
determine whether an alignment, or parts of
it, are insensitive to the evolutionary distance
in an interval. In order to do so, we rely on
an extension of the dynamic programming for-
malism to the case where the gain is described
by an imprecise probability model [4].

The paper is organised as follows. Section 2
discusses the standard approach to amino acid
sequence alignment, using score matrices, gap
penalties and dynamic programming. In Sec-
tion 3 we introduce and motivate a robustified
notion of sequence alignment, based on a sim-
ple imprecise probability model for evolution-
ary distance. Section 4 deals with generalising
the dynamical programming approach in or-
der to determine a robust optimal alignment.

2 Optimal Sequence Alignment

2.1 What is Sequence Alignment?

A sequence alignment consists of writing two
(or more) sequences in rows, and writing sim-
ilar characters in the same column. In do-



ing so, one is allowed to introduce so-called
gaps, denoted by a dash ‘-’ in either one of
the sequences. Assuming that the sequences
are derived from a common ancestor sequence,
matches correspond to conserved regions, mis-
matches correspond to mutations and gaps
correspond to deletions or insertions, briefly
called indels, in either one of the sequences.
Figure 1 gives an example of an amino acid
alignment.

X 10 20

H-alpha V-LSPADKTNVKAAWGKVGAHAGEYGAEA

| | | | | | |||| | | ||

H-beta VHLTPEEKSAVTALWGKV--NVDEVGGEA

X 10 20

Figure 1: An extract from a possible align-
ment of hemoglobin alpha and beta chains [8].

It is convenient to represent alignments in a
grid, as depicted in Figure 2. All paths from
the upper left corner to the lower right cor-
ner represent possible alignments. The path
drawn in Figure 2 corresponds to the align-
ment given in Figure 1. A diagonal move in-
troduces no gaps, a downwards move intro-
duces a gap in the upper sequence, a right-
wards move introduces a gap in the lower se-
quence.
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Figure 2: Alignments can be conveniently rep-
resented in a grid.

When trying to explain evolutionary relation-
ships between sequences, we should identify
the alignment that has the highest chance of
being the result of an evolutionary process.
That is, we try to explain the alignment as
the result of evolution from a common ances-
tor.

We first show how evolutionary dynamics can
be described on the level of genetic sequences.
Then we show how a score matrix is obtained
from these dynamics, and how the result-
ing optimisation problem indeed identifies the
alignment that has the highest chance of being
the result of evolution from a common ances-
tor.

2.2 Evolutionary Sequence Dynamics

The PAM (‘point accepted mutation’) ma-
trices are widely accepted as the standard
scoring system when looking for evolution-
ary relationships in protein sequences. They
are related to the evolution of amino acid
sequences described by a Markov model for
amino acid substitution [3]. Indels, which in-
troduce alignment gaps, are not modelled by
PAM and are treated separately. We will only
give a very brief description of the basic ideas
underlying the dynamics. For a more exten-
sive discussion and improvements of this ap-
proach the reader is referred to the references
[3, 11, 1, 12].

Let At(i) denote the amino acid at site i at
(discrete) time t of a sequence of length N . It
is first assumed that amino acids mutate inde-
pendently at each site of the sequence. This
implies that the probability of the sequence
At to evolve to the sequence At+s is equal to

P [At+s|At] =
∏N

i=1 P [At+s(i)|At(i)]. (1)

Hence, it suffices to know only the probabil-
ities P [At+s(i)|At(i)] at each site i of the se-
quence. It is also assumed that amino acids
mutate independently in time,

P [At+s(i)|At(i)] =
∏t+s−1

r=t P [Ar+1(i)|Ar(i)].
(2)

We thus only need to know the probabilities
P [Ar+1(i)|Ar(i)] at each site i and time r.



Finally, assuming that the transition proba-
bilities are identically distributed in time and
space, P [Ar+1(i)|Ar(i)] does not depend on
the actual values of r and i, but only on the
amino acids Ar(i) and Ar+1(i). Hence, if we
know for any pair (a, b) of amino acids the
probability P [b|a] of a being substituted by
b after one unit of time, then we also know
the probability of any sequence At evolving
to At+s, through Eqs. (1) and (2). Under
the assumptions made so far, this establishes
that we can model evolution of amino acid
sequences through a Markov model.

It is convenient to assume that evolution from
ancestors to descendants is modelled by the
same Markov process as the evolution from
descendants to ancestors, that is, that the
Markov process is time-reversible. Assuming
P [b|a] > 0 for all amino acid pairs (a, b), the
Markov process attains a stationary distribu-
tion π after a sufficient long time. Moreover, π

is independent of the initial distribution, and
is the unique solution of

∑

a

P [b|a]π[a] = π[b]. (3)

Assuming we attained this equilibrium, the
process is time-reversible if and only if [10]

P [b|a]π[a] = P [a|b]π[b]. (4)

Consider two amino acid sequences, B and C,
that have evolved from a common ancestor A

in t time units. Assuming time-reversibility,
and assuming that all amino acids in A are
i.i.d. according to the stationary distribution
π, evolution from A to B and C in t time
units is equivalent to evolution from B to A

in t time units, and then from A to C in t

time units. But this is equivalent to evolu-
tion from B to C in 2t time units. Hence, we
can calculate the probability of B and C hav-
ing evolved from a common ancestor in t time
units simply by calculating the probability of
C having evolved from B in 2t time units.

In practice, the transition probabilities P [b|a]
of the Markov model are estimated using a
large dataset of sequences that are already
aligned (originally, sequences from closely re-

lated species were considered, that is, se-
quences of at least 85% similarity). Many
generalisations of this model have been de-
veloped, dropping stationarity of the transi-
tion probabilities, allowing different transition
probabilities on different sites, etc.

2.3 A Log Likelihood Ratio Scoring

Using the Markov model for amino acid evolu-
tion, a scoring matrix is derived that has the
interpretation of a log likelihood ratio. The
entries of the matrix are roughly given by (up
to a normalisation factor)

st(a, b) = log
Levol[a, b](t)

Lrand[a, b]
, (5)

that is, the logarithm of the likelihood that
a and b are aligned as a consequence of the
evolutionary Markov process from a common
ancestor t time units ago, divided by the like-
lihood that a and b are aligned ‘by chance’,
that is, as a consequence of a multinomial
process, where amino acid frequencies are ob-
tained from the same data used to construct
the Markov model. A positive score st(a, b)
means that a and b are more likely to be
aligned by evolution than by chance, a neg-
ative score means the opposite. Remark that
st(a, b) = st(b, a).

To obtain a score for sequences, recall that
we assumed different sites on sequences to
be independent. Hence, the log likelihood
ratio of two aligned sequences B and C—of
equal length and without gaps—is obtained
by adding the log likelihood ratios at each site
of the sequences:

St(B, C) =

N
∑

i=1

st(B(i), C(i)) (6)

2.4 Gap Scoring

More general, let B be a sequence of length
N , and let C be a sequence of length M . Con-
sider any alignment u of B and C, and denote
the characters (amino acids or gaps) at site i

in the alignment by Bu(i) and Cu(i). The



score of the alignment is given by

St(B, C)(u) =
K

∑

i=1

st(Bu(i), Cu(i)), (7)

where K is the length of the alignment. If
both Bu(i) and Cu(i) are amino acids, the
st(Bu(i), Cu(i)) is given by the log likelihood
ratio (Eq. (5)). If either one of them, say
Bu(i), is a gap, then the score is given by
minus the gap opening penalty g if Bu(i − 1)
is not a gap, and by minus the gap extension
penalty r if Bu(i − 1) is a gap (g and r are
positive).

2.5 Choice of Score Matrix and Gap
Penalties

As argued before, the score for a pair of amino
acids is given by Eq. (5). This score re-
wards alignments that are more likely by evo-
lution than ‘by chance’, and punishes align-
ments that are less likely by evolution than
‘by chance’.

Gap openings are less likely than gap exten-
sions, and therefore the gap opening penalty
g is chosen substantially higher than the gap
extension penalty r. The gap penalties should
also be chosen relative to the range of scores
in the score matrix. If the gap penalty is too
high, gaps will never appear in the optimal
alignment. And if it is too low, too many
gaps will appear in the optimal alignment.

Much research has been devoted to analysing
how the score matrix and gap penalties should
be chosen. The choice of the score matrix is
based mainly on the evolutionary dynamical
model and estimates of the evolutionary dis-
tance. Through statistical analysis, appropri-
ate gap opening and extension penalties have
been motivated for various score matrices (see
for instance [9]).

One result is that a good choice for the score
matrix, and consequently also a good choice
for the gap penalties, can be made based on
the evolutionary distance between sequences
and their closest common ancestor.

2.6 Needleman-Wunsch Algorithm

Finding the optimal alignment is at first sight
an extremely hard computational task. The
number of possible alignments of two se-
quences of length N grows exponentially with
N . Even for sequences of modest length, com-
puting power is far from able to compare that
many sequences in a reasonable amount of
time.

Dynamic programming provides a method for
exponentially reducing the number of align-
ments that need to be considered in order to
find the optimal one [7]. Due to lack of space
the original algorithm is not discussed here.
A generalised version of the algorithm will be
discussed in Section 4 further on.

3 An Imprecise Probability Model

for Evolutionary Distance

In Section 2, it was argued that a good
choice of the score matrix and the gap penal-
ties can be made based on the evolutionary
distance between the sequences under study
and their closest common ancestor. Unfor-
tunately, for short sequences, estimation of
evolutionary distance is subject to serious
bias due to stochastic effects [14]. Instead of
somehow trying to improve evolutionary dis-
tance estimates between short sequences by
reducing stochastic effects—this may well be
impossible—we propose a different approach.

Instead, does a bias in the evolutionary dis-
tance also leads to a bias in the optimal align-
ment? Or, how sensitive is the alignment to
the evolutionary distance? It is well-known
that optimal alignment is quite sensitive to
the choice of the score matrix, especially for
long sequences [5]. But for short sequences,
this does not need to be the case. To give an
extreme example: if we would find that the
optimal alignment is independent of the evo-
lutionary distance, we also should not have to
worry about it.

Recent developments in imprecise probability
theory provide the perfect tool for perform-
ing such analysis. Let us briefly touch upon
those results and apply them to the alignment



problem.

Let T = {t ∈ R : t ≥ 0} be the space of pos-
sible evolutionary distances t between two se-
quences B and C and their closest common
ancestor. Assume that the only information
we have about t ∈ T is that it takes a value
in the interval [t1, t2], for some t1 ≤ t2. In
imprecise probability theory, this information
can be used in order to construct a partial
preference ordering on alignments [13]:

Definition 1 (Preference). Let u and v be
two alignments (of B and C). Then, u is
said to be strictly preferred to v, and we write
u >[t1,t2] v, if

inf
t∈[t1,t2]

[St(B, C)(u) − St(B, C)(v)] > 0. (8)

If u >[t1,t2] v then there is an ε > 0 such
that St(B, C)(u) > St(B, C)(v) + ε for every
t ∈ [t1, t2]. This means that, independently of
the evolutionary distance in [t1, t2], u is (uni-
formly) a strictly better alignment of B and
C than v. In such a case, we should of course
prefer u over v.

The optimisation problem can now also be re-
stated. Usually, the partial order >[t1,t2] will
not have a greatest element. Therefore, it
makes more sense to look for undominated,
or maximal elements.

Definition 2 (Maximality). Say an align-
ment u is maximal with respect to [t1, t2] if
v 6>[t1,t2] u, that is, if

sup
t∈[t1,t2]

[St(B, C)(u) − St(B, C)(v)] ≥ 0, (9)

for all possible alignments v of B and C.

The idea behind this definition is that, if we
do not prefer any other alignment v over u,
then we should consider u as a good align-
ment candidate. The information we have
does not allow us to make a better choice than
u. An efficient algorithm for finding all maxi-
mal alignments will be given in Section 4. But
let us first make a few important remarks.

Firstly, the notion of maximality generalises
the classical notion of optimality. Indeed, if
t1 = t2 = t then any maximal alignment actu-
ally maximises the score St(B, C)(v) over all
possible alignments v.

Secondly, it is often argued that it is impor-
tant to find the best alignment. But, when
looking for maximal alignments, we do not
obtain a single solution, but rather a set of
solutions—perhaps even a pretty large set. At
first sight, this may seem undesirable. Nev-
ertheless, I believe even a set of best possible
alignments can be useful:

• If we obtain a large set, then this simply
means that we have insufficient informa-
tion in order to construct the best align-
ment.

• We might be lucky and find that there
is only one maximal alignment. If that
is the case, we actually also know that
this alignment is insensitive to assump-
tions made about evolutionary distance
in the interval [t1, t2].

• More generally, there may be certain
constant patterns in the set of maximal
alignments, i.e., it may happen that cer-
tain regions are consistently aligned over
the whole set of maximal alignments. We
then do not only know that these re-
gions are optimally aligned, but also that
they are insensitive to assumptions made
about evolutionary distance in the inter-
val [t1, t2].

4 Finding Maximal Alignments

Through Dynamic Programming

Recently, the algorithm of dynamic program-
ming [2] has been generalised in order to find
all maximal paths of a dynamical system, in
case maximality is defined in the sense of Def-
inition 2 [4]. We briefly discuss how the algo-
rithm is implemented.

More general, let B be a sequence of length N ,
and let C be a sequence of length M . First,
finding maximal alignments of B and C is re-
stated in terms of finding the maximal paths
of a dynamical system. This is done by inter-
preting alignments as paths of a dynamical
system, and scores as gains associated with
that path. Figure 2 shows how we can do that.
The grid represents the state space. At each



point in the grid we can move either right-
wards, downwards or diagonal (except at the
right and bottom borders). The gain associ-
ated with a move from position (i, j) if the
previous move was p, is given by

Gt(i, j, p, ↓) =

{

rt, if p =↓

gt, otherwise

Gt(i, j, p,→) =

{

rt, if p =→

gt, otherwise

Gt(i, j, p,↘) = St(B(i), C(j))

The gain associated with a path is simply
given by the sum of the gains of each move.

The gain depends on the evolutionary dis-
tance t. Since the gain also depends on the
previous move we must extend the state space
with an additional state variable p at each
point (i, j) in order to remember our previ-
ous move. Otherwise, we cannot apply the
dynamical programming formalism.

Let P(i, j, p) denote the set of all paths from
(i, j, p) to the right bottom corner. Observe
that p denotes the previous move, p ∈ {↓,→
,↘}, which is needed in order to calculate
the gain (in order to tell the difference be-
tween a gap opening and a gap extension).
Let M(i, j, p) denote the set of maximal paths
from (i, j, p) to the bottom right corner, that
is,

M(i, j, p) = max>[t1,t2]
P(i, j, p) (10)

It is convenient to define M(i, j, p) = ∅ when-
ever i > N or j > M . Observe that P(i, j, p)
is a finite set for every state (i, j, p). Hence,
the compactness condition under which the
generalised Bellman equation holds is trivially
satisfied [4].

Theorem 1 (generalised Bellman equa-
tion). For any state (i, j, p) the following
equality holds:

M(i, j, p) = max
>[t1,t2]

(i, j, p; ↓) ⊕M(i + 1, j, ↓)

∪(i, j, p;→) ⊕M(i, j + 1,→)

∪(i, j, p;↘) ⊕M(i + 1, j + 1,↘),

(11)

where (i, j, p; ↓)⊕M(i+1, j, ↓) denotes the set
of all concatenations of the downward move
from state (i, j, p), with a maximal path from
state (i + 1, j, ↓), etc.

Eq. (11) yields an efficient recursive algo-
rithm to calculate the set of all maximal paths
M(0, 0,↘), and hence, all maximal align-
ments. It solves a global maximisation prob-
lem by solving 3MN smaller maximisation
problems (see Figure 3).

** initialisation **

for p=|,-,\

MAX(N,M,p)={(M,N,p)}

for i=0 to N

MAX(i,M+1,p)={}

next i

for j=0 to M

MAX(N+1,j,p)={}

next j

next p

** dynamic programming **

for i=N to 0

for j=M to 0

for p=|,-,\

if (i<N) or (j<M)

** Bellman **

MAX(i,j,p)=max{

(i,j,p;|)+MAX(i+1,j,|),

(i,j,p;-)+MAX(i,j+1,-),

(i,j,p;\)+MAX(i+1,j+1,\)

}

next p

next j

next i

Figure 3: The algorithm for calculating max-
imal alignments.

5 Discussion and Future Research

We demonstrated one possible way of how im-
precise probabilities can be applied in bioin-
formatics. Imprecise probability theory al-
lows us to substantially weaken assumptions
we have to make about data, for instance
about the evolutionary distance. In this pa-
per, we did that by means of an interval
rather than using a point estimate. It turns



out that a good alignment still can be found
in an efficient way, through a generalisation
of the well-known Needleman-Wunsch algo-
rithm, and relying on an extension of dynamic
programming to the case where the gain is
described by an imprecise probability model.
This generalisation could be particularly use-
ful in cases where the sequences under study
are rather short, or other cases where point
estimates of evolutionary distance are unreli-
able or hard to obtain. An implementation of
the algorithm is currently in preparation.
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