
XML-driven Bitrate Adaptation of SVC Bitstreams
Tom Paridaens, Davy De Schrijver, Wesley De Neve, and Rik Van de Walle

Department of Electronics and Information Systems – Multimedia Lab
Ghent University - IBBT

Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium
email: {tom.paridaens, davy.deschrijver, wesley.deneve, rik.vandewalle}@ugent.be

Abstract— Thanks to technological evolutions, the number of
devices capable of playing video bitstreams is growing. The
heterogenity in these devices grows in terms of screen resolution,
processing power, and available band width. In this paper, we
describe an MPEG-21 Bitstream Syntax Description Language-
based (BSDL-based) adaptation framework that allows providers
to easily adapt scalable bitstreams without having to recode the
original bitstream. We describe the steps necessary to adapt the
bitstreams through BSDL. The main contribution of this paper
is an optimized adaptation framework using a Bitstream Syntax
Schema developed to minimize the size of the Bitstream Syn-
tax Descriptions (BSDs). Furthermore, we created a Streaming
Transformations for XML Stylesheet (STX-stylesheet) to exploit
the advantages of Fine Grain Scalability, this to adapt the bitrate
of Scalable Video Coding bitstreams in the most accurate way
possible. Our results show that BSDL-based adaptation is able
to compete with binary adaptation tools. The target bitrates can
be reached within a margin of 2%, which is comparable to the
reference software which uses binary adaptation.

I. INTRODUCTION

The evolution of mobile devices (e.g., Personal Digital
Assistants (PDAs), mobile phones) in terms of computing
power and screen resolution has allowed more and more
people to have access to video streams in a mobile context.
All these different devices pose different requirements to the
video bitstreams offered by content providers. Mobile phones
typically have a smaller screen and lower band width (e.g.,
through Global Packet Radio Services (GPRS)), while PDAs
have higher resolution screens and can have access to broad-
band connections such as Wireless Fidelity (WiFi). In order
to serve all these different devices, providers typically have
several versions of the same video bitstream (e.g. different
band widths, resolutions,...). These multiple versions result in a
high storage and encoding costs, consequently providers want
to limit the number of different versions.

To allow the adaptation of video bitstreams in order to fit
the different requirements these devices pose, a new extension
to the H.264/AVC-standard is being developed, H.264/AVC
Scalable Video Coding (SVC) [1]. The SVC standard allows to
create one “parent”-bitstream from which adapted bitstreams
can be extracted in a straightforward way. The resulting
bitstreams can have a lower resolution (spatial axis), frame
rate (temporal axis) and/or bitrate (quality axis). This allows
providers to adapt the stream to every device without the need
of coding and storing the stream in several versions. Still, in
order to adapt the bitstreams, extra techniques are necessary.

These adaptations can be applied in several domains (e.g.,
Binary, Textual).

In this paper, we will pose an adaptation solution for SVC
video bitstreams based on the use of the Bitstream Syntax
Description Language (BSDL) [2]. This solution will create
a textual description of the video bitstreams, transform this
description and finally, create the adapted video bitstream. We
focus on adaptation along the quality axis for more accuracy,
although adaptation along the spatial and temporal axis are
possible too [3].

This paper is organized as follows. Section II describes
the fundamental technologies used in this paper, i.e. MPEG-
21 BSDL and Joint Scalable Video Model 8 (JSVM8). Fur-
thermore, we describe the workflow of the MPEG-21 BSDL
adaptation framework as used in our tests. Section III describes
the actual adaptation process, while Section IV discusses the
performance results. Finally, Section V concludes.

II. FUNDAMENTAL TECHNOLOGIES

In this section, an overview is given of the fundamental
technologies used in this paper.

A. MPEG-21 BSDL

MPEG-21 BSDL is part of the Digital Item Adapta-
tion standard of the MPEG-21 Multimedia Framework. A
BSDL framework allows to generate a (high-level) Extensible
Markup Language (XML) description of the structure of a
bitstream in a format-agnostic manner, called the Bitstream
Syntax Description (BSD) [4]. This high-level approach allows
an easier adaptation of a bitstream as only a limited knowledge
of the bitstream structure is necessary. The adaptation typically
happens, in video context, on a picture per picture basis rather
than on a bit-per-bit basis. Furthermore, as a BSD is an XML
file, existing XML transformation technology can be used for
expressing a particular adaptation.

Fig. 1 shows the workflow of a BSDL-based adaptation
framework. The workflow consists of three steps and takes
place in two different domains (Binary and XML). In the first
step, the description of the bitstream structure is generated
using the BintoBSD-tool (conversion from Binary to XML
domain). To generate this description, a Bitstream Syntax
Schema (BS Schema) is needed that describes the structure
of an SVC bitstream. This BS Schema makes the BSDL
framework format-agnostic. This implies that the proposed
framework can adapt bitstreams compliant with other coding

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55821005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Workflow of an MPEG-21 BSDL-based adaptation framework.

formats as well (such as JPEG2000 [5] for still images, SVC
for video, and MPEG-4 Bit Slice Arithmetic Coding [6] for
audio) as long as a BS Schema of the bitstream structure is
available.

In the second step the actual adaptation is applied. As
the description is an XML file, regular XML transformation
techniques such as Streaming Transformations for XML (STX)
[7] can be used. Using these techniques, a description is
generated that complies with the imposed restrictions.

In the final step, the transformed description is used by the
BSDtoBin-tool to generate the adapted bitstream (conversion
from XML to Binary domain).

B. H.264/AVC SVC

H.264/AVC SVC [1] is a block-based coding scheme based
on the H.264/AVC standard. SVC introduces several types
of embedded scalability levels (temporal, spatial, and quality
scalability, also called Signal-to-Noise Ratio scalability(SNR
scalability)). Thanks to this embedded scalability, an SVC
bitstream can be adapted without re-encoding. By leaving
out unnecessary Network Abstraction Layer Units (NALUs)
or truncating them, the frame rate, resolution, and quality
of an SVC bitstream can be lowered. In this paper, we use
the JSVM8 specification as implemented in the 7.5 reference
software. This software suite contains a reference adaptation
utility which works in the binary domain and therefore is
format-specific.

In this paper, we make use of Fine Grain Scalability (FGS).
FGS is a form of Signal-to-Noise Ration Scalability (SNR
scalability). To enable FGS, a bitstream consists of several
quality layers. The lowest layer is called the base layer. The
additional layers are called enhancement layers. The base layer
must not be deleted or adapted as the enhancement layers
are based on it. Therefore, the base layer declares the lowest
achievable bitrate (using only SNR scalability). In order to
control the bitrate of the adapted video bitstreams as fine as
possible, we make use of FGS. FGS makes it possible to cut
off the bitstream at any byte position in the enhancement
layers. Note that an enhancement layer can only exist if
all the lower-quality layers are unadapted. As stated in the
specification, every layer is placed in its own NALU.

III. ADAPTATION

In this section, we will discuss the regulation of the bitrate
by adaptation along the SNR axis, using FGS. This bitrate is
defined by the user environment. After adaptation, the adapted
stream can be used in this environment.

Fig. 2 shows a simplified example of a transformation of a
BSD for adaptation along the SNR axis. The BSD has been
simplified for clarity and describes the 4 NALUs shown in the
drawing (corresponding to one frame in this example). The
second NALU in this example contains the first enhancement
layer (line 8: quality level is 1). As this NALU contains
an enhancement layer, it can either be dropped or adapted.
In this example, we adapt the value of the slice payload
element (line 10). This element describes the byte position of
the actual video information in the current NALU (the first
number) and the size of that information (the second number)
in bytes. By adapting the value of the second number, the size
of the NALU is adapted and therefore the bitrate of the video
bitstream. When adapting the slice payload element, the
NALUs containing the higher enhancement layers have to be
dropped (in this case with quality level higher than 1).

In order to define the cut-off point and to transform the
BSDs, we developed a STX-stylesheet. STX is chosen for its
low memory requirements and its speed [8]. The stylesheet
defines the cut-off point using the information embedded
inside the video bitstream. Every bitstream generated with the
reference software, implementing JSVM8, contains Supple-
mental Enhancement Information messages (SEI messages).
In these messages lies bitrate information for the different
quality layers inside the bitstream. In our case, the most
important bitrate information is the average bitrate. Using the
information of the average bitrates of all the available quality
layers, the adaptation engine calculates the point every NALU
has to be cut off at. The engine first determines which of the
layers contains the target bitrate. The NALUs containing the
layers beyond the cut off layer will be removed. Then, if the
bitrate is in the range of an enhancement layer, the engine
calculates which percentage of this layer should be preserved:

Percentagepreserved =
(target bitrate− avg bitratelayer x)

(avg bitratelayer x+1 − avg bitratelayer x)
(1)

with layerx the highest, completely reserved layer and
layerx+1 the layer containing the cut-off point. This per-
centage is used to define the cut-off point for every NALU
containing the highest preserved layer by changing the value
of slice payload:

slice payload = slice payload ∗ Percentagepreserved (2)

If the target bitrate is below the bitrate of the base layer the
target bitrate is unreachable and the enhancement layers will
be dropped. If the bitrate is higher than the maximum bitrate
of the highest layer, the complete bitstream will be preserved.



Fig. 2. Adaptation of the bitrate.

IV. TEST RESULTS

In this section, we describe the test sequences and discuss
the performance of the adaptation using BSDL.

A. Test Sequences

The test sequences are created using the JSVM8 reference
software [9] containing four quality layers, one spatial layer,
and five temporal layers. Table I shows the bitrates for the

TABLE I
AVERAGE BITRATES OF THE QUALITY LAYERS OF THE TEST

SEQUENCES (KBIT/S).

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
Base Layer 863 166 459 90 316
Enh. Layer 1 1535 276 771 218 738
Enh. Layer 2 3159 510 1408 426 1796
Enh. Layer 3 7902 1190 2671 888 4177

different quality layers for each of the test sequences. The
bitrates are the sum of the bitrates of the lower layers and the
layer itself. The test sequences are:

• Sequence 1: Crew (4CIF, 300 frames, 1507 NALUs)
• Sequence 2: Foreman (CIF, 300 frames, 1507 NALUs)
• Sequence 3: Football (CIF, 250 frames, 1257 NALUs)
• Sequence 4: Stockholm (CIF, 250 frames, 1257 NALUs)
• Sequence 5: Compilation (CIF, 2100 frames, 10507

NALUs): Container, Foreman, Head with glasses, Mobile,
Mother Daughter, News and Silent

Note that one frame, in our tests, consists of five NALUs (one
NALU for H.264/AVC compatibility, one for the base layer,
and three for the enhancement layers). The bitstream also has
seven extra NALUs (one NALU for the scalability information,
and six NALUs for the Sequence and Picture Parameter Sets).

B. Execution Times

Table II shows, for each sequence, the playback time, the
processing time for each step in the adaptation chain, and
the total processing time. The measurements were done on
a PC with an Intel Pentium D 3.0 GHz CPU, having 2 GB
RAM and running Windows XP Professional SP2 and the Sun
Microsystems Java Runtime 1.5.0 09. The times are measured

for 6 consecutive executions from which the 2 best and the 2
worst results were removed. The average of the 2 remaining
times is given. The execution times for the BSDtoBin step are
the average of the times to create a 300 kbit/s, a 1000 kbit/s
and a 2500 kbit/s stream. The values between brackets are
the maximum deviation. When looking at the total processing

TABLE II
PROCESSING TIMES FOR THE ADAPTATION CHAIN (S).

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
Playback 10 10 8.3 8.3 70
BintoBSD 10.3 6.6 6.3 5.7 46.7
Transform 3.2 3.5 3.0 3.1 16.7
BSDtoBin 1.4 (0.12) 1.5 (0.14) 1.4 (0.04) 1.4 (0.08) 3.5 (1.1)
Total 14.9 11.6 10.7 10.2 66.9

time, we see two notable results. First of all, we see that
the high resolution of Sequence 1 (compared to the other
sequences) has a relatively small effect on the total processing
time, when compared to the increase in bitrate. This is due
to the fact that the processing speed is mostly dependent
on the number of NALUs a sequence contains, rather than
on the actual bitrate. The low effect of the bitrate on the
processing time of bitstreams, is shown by the processing
times for Sequences 3 and 4. While the bitrate of Sequence 3
is at least three times higher, the processing time is only 2%
higher. When we compare the processing times for Sequences
2 and 3, we also see the result of the time needed to load the
bintoBSD-tool and the BS Schema (this takes approx. 0.6s).

When we look at the separate steps, we see that the
generation of the BSD is the most complex. This is not a
problem as the generation is still real time (for long sequences)
and is done only once.

C. File Sizes

To adapt the original bitstream with BSDL, the BSDs
have to be generated. In our tests, we tried to keep these
descriptions as small as possible. Therefore we created a
BS schema for a high-level description, containing only the
Supplemental Enhancement Information messages (SEI), the
NALU Headers containing the scalability information, the



Picture and Sequence Parameter Sets and the payload size
of the slices inside the NALU. By leaving all information
not necessary for the adaption of the bitstreams out of the
BSDs, we reach an acceptable generation speed and relatively
small XML files (compared to BSDs generated by BS Schemas
describing the structure of the bitstreams completely). Table

TABLE III
SIZE OF VIDEO BITSTREAMS AND GENERATED XML FILES (KB).

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
Bitstreams 9647 1453 2718 903 35690
BSD 1738 1736 1459 1457 11771
BSD 300 kbit/s 624 1365 840 1148 3972
BSD 1000 kbit/s 624 1736 1150 1457 9169
BSD 2500 kbit/s 1367 1736 1459 1457 11769

III shows the sizes of all created BSDs. As with the processing
time, the file size of the original BSD is mostly dependent on
the number of NALUs rather than on the bitrate. This is why
Sequences 1 and 2 (and 3 and 4) have a (nearly) equal size
description despite their different resolution and size.

The second part of Table III shows the BSD sizes after
transformation. We can see that the size of the BSDs grows as
the target bitrate raises. This is because a higher bitrate results
in more preserved quality layers, and thus more preserved
NALUs in the BSD. The equal size of the 300 kbit/s and
1000 kbit/s BSDs for Sequence 1 are the result of the limited
bitrate range. These bitrates are outside of the bitrate range of
the Sequence so the transformed BSD contains only the base
layer, the lowest possible bitrate.

For Sequence 2, we see the BSD size is equal for 1000 kbit/s
and 2500 kbit/s. This is because the highest enhancement layer
is already used for every picture in the 1000 kbit/s bitstream.
The only differences between the 2500 kbit/s BSD and the
1000 kbit/s BSD are the values of the slice payload
elements. Therefore, the size of the BSDs are nearly the same.

D. Adaptation Performance

To conclude the performance results, we show the resulting
bitrates in Table IV and the corresponding PSNR values in
Table V. We also added the resulting bitrates and PSNR values
when using the reference software. The Italic numbers show
the bitrates and PSNR-values limited by the bitrate ranges of
the test sequences.

As can be seen in Table IV and V, our BSDL Framework
can compete with the binary, format-specific adaptor of the
reference software suite. The resulting bitrates are within 2%
of the required bitrate.

V. CONCLUSION

In this paper, we have shown that a Bitstream Syntax
Description Language Framework (BSDL Framework) has
many advantages over binary adaptation tools. It is, as it
is BSDL-based, format-agnostic, high level and allows the
use of existing transformation techniques such as Streaming
Transformations for XML (STX). The framework creates a

TABLE IV
RESULTING BITRATES AFTER ADAPTATION (KBIT/S).

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
300 kbit/s BSD 863 298 459 300 316

Ref 863 292 459 293 316
1000 kbit/s BSD 983 984 989 888 981

Ref 977 977 977 888 976
2500 kbit/s BSD 2456 1190 2463 888 2447

Ref 2442 1190 2442 888 2441

TABLE V
RESULTING PSNR-VALUES AFTER ADAPTATION (DB).

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
300 kbit/s BSD 33.12 35.31 30.25 36.0 36.90

Ref 33.12 35.27 30.25 35.9 36.90
1000 kbit/s BSD 33.59 39.74 34.28 41.00 39.99

Ref 33.57 39.71 34.21 41.00 39.98
2500 kbit/s BSD 36.85 40.83 40.17 41.00 43.67

Ref 36.83 40.83 40.08 41.00 43.66

high-level description, transforms it conform the required
bitrate for the video bitstream, and then creates, using the
transformed description, the adapted video bitstream. Our tests
show that a BSDL framework, using our simplified Bitstream
Syntax Schema (BS Schema) and STX-stylesheet for Fine
Grain Scalability (FGS) quality adaptation, can compete with
binary adaptation tools such as the reference software. The
adapted video bitstreams have a bitrate within 2% of the
required bitrate.

ACKNOWLEDGEMENTS

The research activities that have been described in this
paper were funded by Ghent University, the Interdisciplinary
Institute for Broadband Technology (IBBT), the Institute for
the Promotion of Innovation by Science and Technology in
Flanders (IWT), the Fund for Scientific Research- Flanders
(FWO-Flanders), the Belgian Federal Science Policy Office
(BFSPO), and the European Union.

REFERENCES

[1] ITU-T and ISO/IEC JTC1 JVT-SVC specifications http://ftp3.itu.ch/av-
arch/jvt-site/2006 10 Hangzhou/JVT-U201.zip

[2] M. Amielh, S. Deviller Bitstream Syntax Description Language: Appli-
cation of XML schema to multimedia content adaptation Proceedings of
the 11th International WWW Conference, Honolulu, Hawaii, 2002

[3] D. De Schrijver, W. De Neve, K. De Wolf, R. De Sutter, R. Van de Walle
An Optimized MPEG-21 BSDL Framework for the Adaptation of Scalable
Bitstreams Journal of Visual Communication and Image Representation,
http://www.elsevier.com/

[4] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner Bitstream Syntax
Description-Based Adaptation in Streaming and Constrained Environ-
ments IEEE Transactions on Multimedia, Vol. 7, No. 3, June 2005

[5] JPEG committee JPEG 2000 http://www.jpeg.org/jpeg2000/
[6] ISO/IEC Audio Lossless Coding (ALS), new audio profiles and BSAC

extensions ISO/IEC 14496-3:2005/Amd 2:2006
[7] P. Cimprich Streaming transformations for XML version 1.0 working

draft http://stx.sourceforge.net/documents/spec-stx-20040701.html
[8] D. De Schrijver, W. De Neve, D. Van Deursen, J. De Cock, and R. Van de

Walle On an Evaluation of Transformation Languages in a Fully XML-
driven Framework for Video Content Adaptation IEEE ICICIC, 2006

[9] ITU-T and ISO/IEC JTC1 JVT-SVC reference implementation
http://ftp3.itu.ch/av-arch/jvt-site/2006 07 Klagenfurt/JVT-T203.zip


