
Motion Compensation and Reconstruction of
H.264/AVC Video Bitstreams using the GPU

Bart Pieters, Dieter Van Rijsselbergen, Wesley De Neve, and Rik Van de Walle
Department of Electronics and Information Systems – Multimedia Lab

Ghent University - IBBT
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg–Ghent, Belgium

Email: {bart.pieters, dieter.vanrijsselbergen, wesley.deneve, rik.vandewalle}@ugent.be

Abstract— Most modern computers are equipped with pow-
erful yet cost-effective Graphics Processing Units (GPUs) to
accelerate graphics operations. Although programmable shaders
on these GPUs were designed for the creation of 3-D rendering
effects, they can also be used as generic processing units for
vector data. This paper proposes a hardware renderer capable of
executing motion compensation, reconstruction, and visualization
entirely on the GPU by the use of vertex and pixel shaders. Our
measurements show that a speedup of 297% can be achieved
by relying on the processing power of the GPU, relative to the
CPU. As an example, real-time playback of high-definition video
(1080p) was achieved at 62.0 frames per second, consuming only
68.2% of all CPU cycles on a modern machine.

I. INTRODUCTION

Nowadays, consumers expect to be able to decode high-
definition video sequences on their personal computers, though
even the newest CPUs have difficulties achieving this. With the
H.264/AVC standard, high-quality video can be compressed
at low bitrates with a minimal impact on the visual quality.
However, a significant amount of computational power is re-
quired to achieve this task. Most modern PCs have a powerful
floating-point co-processor at hand, located on the graphics
card. These GPUs, as they are called analogously to the CPU,
can be used to offload some of the tasks from the CPU. They
can execute parts of the decoding process parallel to the CPU.
However, the GPU lies dormant in most cases when decoding
video. This paper aims at showing how to activate the GPU
to decode part of an H.264/AVC video bitstream.

The remainder of this paper is organized as follows. Section
II briefly addresses previous work done in this rather new
research area. Section III provides an introduction to Motion
Compensation (MC) and reconstruction in the H.264/AVC
standard. Sections IV and V give an introduction to the
GPU architecture and how to accomplish MC using the GPU.
Sections VI and VII show the results and limitations of our
proposed solution. Finally, Section VIII concludes this paper.

II. STATE-OF-THE-ART

The need for offloading MC from the CPU has been
addressed in [1] for the proprietary WMV-8 codec from
Microsoft Corporation. In the presented profiling, MC and
Color Space Conversion (CSC) together consumed more than
61% of the total decoding time. A similar behavior has been
observed for the H.264/AVC standard in [2]. The desired goal

Read
Bitstream

VLD, IQ, Inverse-
Transformation

CPU

GPU

Intermediary Buffer in System Memory

...

MC,
Reconstruction

CSC,
Visualization ...MC,

Reconstruction
CSC,

Visualization

Read
Bitstream

VLD, IQ, Inverse-
Transformation

Fig. 1. GPU and CPU decoding video in a pipelined fashion[1].

is to make CPU and GPU work in a pipelined fashion so that
the GPU can perform the MC, reconstruction, and CSC, while
the CPU focuses on Variable Length Decoding (VLD), Inverse
Quantization (IQ) and Inverse Transformation. Achieving this
objective will result in a significant speed-up of the decoding
process, as long as the setup cost of the GPU is small. Fig. 1
shows this design as proposed by Shen et al. in [1].

MC and reconstruction on the GPU have already been
implemented for Microsoft’s proprietary WMV-8 in [1]. One
of our goals is to investigate whether the same results can
be achieved for the more complex and higher-demanding
H.264/AVC standard [2].

III. MOTION COMPENSATION IN H.264/AVC

H.264/AVC divides pictures into macroblocks using three
iterative steps (tree-structured MC). First, into macroblocks,
these macroblocks are divided in macroblock partitions and
these are in their turn divided in sub-macroblock partitions.
To eliminate redundancy, these macroblocks can be predicted
either by intra or inter prediction. Macroblocks are grouped
together to form slices, which are parts of the picture that can
be decoded independently. In this paper, we suppose that a
picture consists of one slice.

Intra prediction uses pixels from previously decoded adja-
cent macroblocks in the same slice as a basis for prediction.
These adjacent macroblocks can be encoded as either intra-
predicted or inter-predicted macroblocks.

Inter prediction uses decoded pictures present in the De-
coded Picture Buffer (DPB) to predict macroblocks. One
possibility is to predict the macroblock based on up to one
of 16 previously decoded reference pictures. An index is used

to choose the desired reference picture from the Reference
Picture List, together with a motion vector of a particular
precision to retrieve the correct prediction. This type of
macroblock is called a P macroblock. A slice containing only
P macroblocks is called a P slice.

MC can be performed at integer pixel level and sub-
pixel level (e.g. half-pel and quarter-pel), hence with different
pixel interpolation strategies. The calculation of half-pels for
instance uses a 6-tap interpolation filter. In one interpolation
strategy, this filter is used six times to calculate a middle half-
pel, which implies that more than 36 samples may be used
in this process. These interpolations are therefore costly in
term of CPU usage. They are the main reason why MC is a
time-consuming process for a decoder. For more information
regarding MC in H.264/AVC, the reader is referred to [3].

IV. REPRESENTING VIDEO ON THE GPU

The GPU uses raw geometry data, vertices and triangles, po-
sitioned in a 3-D space. A triangle is formed by three vertices.
Two triangles form a quad. These vertices are transformed -
e.g., projected on a plane - and then converted to a pixel-
based raster. The latter is called the rasterization phase and
establishes the values of the pixels. These values - e.g., colors
- can be either calculated or looked-up in memory blocks
in GPU memory called textures. The resulting colored pixels
are finally written to a screen buffer and can subsequently be
viewed on a screen. Alternatively, the results can be rendered
to a texture. This makes it possible to use previous results in
successive render passes.

Both vertex transformation and pixel rasterization are pro-
grammable since Direct3D 8.1, an API from Microsoft used to
program the GPU. This makes it possible to use the GPU for
advanced custom calculations, done by small programs, called
shaders that run on the GPU. Vertex transformation and pixel
rasterization are done by vertex and pixel shaders respectively.

Fig. 2 shows how this architecture can be used to manip-
ulate video. A grid of vertices is constructed conform to the
macroblock structure of the video, aligned on a 2-D plane.
Every macroblock, macroblock partition and sub-macroblock
partition is represented by four vertices forming a quad. The
vertices have texture coordinates related to their position in 3-
D space. All reference pictures are resident in GPU memory as
textures. A pixel shader is used to fill the quads with pixels and
pixel values are calculated from looked-up texture elements
(texels) using the texture coordinates of the vertices. This way,
the top left quad is filled with pixels from the top left of the
reference picture for example.

V. H.264/AVC MOTION COMPENSATION ON THE GPU

A. Proposed Design

By using the GPU combined with Direct3D, we can execute
our solution on all hardware supporting Direct3D and certain
shader models. The obtained flexibility can for instance be
used to apply advanced custom macroblock error correction
methods.

 Vertex with texture coordinates

Quad /MB Rendered
Quad/MB

Grid of Quads Reference Texture

Macroblock
Structures in

System Memory
Upload

GPUCPU

Pixel Shader

Fig. 2. The GPU architecture used in manipulating video.

Our implementation starts at the Intermediary Buffer in
Fig. 1, containing macroblock descriptions, motion vectors and
residual data. Fig. 3 shows the operational work flow. In the
Figure, textures (Tx) are used as reference textures in render
passes. The result is a new texture composed by a pixel shader.
The work flow for luminance pictures is organized as follows.

1) A grid of quads is constructed representing the mac-
roblock structure of the video picture as addressed pre-
viously. All four vertices of the quads contain duplicates
of the motion vector of the corresponding macroblock or
(sub-)macroblock partition (as vertex data are private).

2) A vertex shader translates the texture coordinates of all
vertices according to their stored motion vector. This
way, full-pel MC is accomplished.

3) The motion-compensated picture is rendered in 6 render
passes as shown in Fig. 3, corresponding with the
different interpolation strategies, based on the reference
picture texture (T1). The texture used to hold the motion-
compensated picture (T2) is filled each render pass
with certain quads selected by a vertex shader. Fig. 4
illustrates this process. For each interpolation technique,
the following is done:
• a vertex shader displaces all quads that do not need

to be filled with the selected interpolation technique;
• a pixel shader (PS1..6) is selected according to the

desired interpolation technique to fill all remaining
quads. Multiple pixel shaders are used as few pixel
shader instruction slots are available.

4) Meanwhile, the CPU has uploaded the residual data to
a texture (T3) on the GPU. The motion-compensated
picture is selected as a reference texture to start the
reconstruction phase. A pixel shader (PS7) renders a
single quad with the dimension of the video, using the
motion-compensated picture and the uploaded residual
data as textures. The two are added together to create
the reconstructed picture (T4), which remains in GPU
memory.
A similar process is done for the chroma pictures using
only one interpolation strategy, resulting in two textures
containing the recontructed chroma pictures.

5) CSC is accomplished by using the reconstructed pictures
in a render pass with a pixel shader (PS8) that transforms
all pixel values. The result is presented on screen.

Reference Picture
(T1)

Motion Compensated
Picture (T2)

MC
Full-Pel (PS1)

Reconstruction
(PS7)

Residual Data
(T3)MC

Half-Pel 1 (PS2)

MC
Q-Pel 3 (PS6)

Reconstructed Picture
(T4)

Pixel Shader Texture
...

Color Space
Conversion (PS8)

Fig. 3. Flow chart of textures and pixel shaders.

Pass 3: Q-Pel MBsPass 2: Half-Pel MBsPass 1: Full-Pel MBs

Pixel Shaders

Quad
Lack of Quads

Viewing Frustum

Vertex Shaders

Grid of Quads

Fig. 4. Using vertex shaders to select the required macroblocks for
a specific pixel shader. In practice, 6 render passes are needed.

B. Sub-Pixel Motion Compensation

As illustrated in Fig. 4, the motion compensated luminance
picture is established over six render passes. Each of these
passes fills a part of the picture with a different interpola-
tion technique, calculated by pixel shaders. By dispositioning
quads out of the viewing frustum, the GPU is smart enough
to exclude them from the rendering phase. This way, the CPU
is relieved of the burden of deriving motion vector types and
grouping similar quads. In case of chroma pictures, only one
pass for each picture is required as H.264/AVC only uses one
type of interpolation.

Pixel shaders execute the correct interpolation algorithm
for calculating sub pixels. Attention was paid to achieving
drift-free MC by ways described in [4]. The GPU shader
architecture provides instructions working on floating-point
numbers while video decoding depends on integer calcula-
tions. Hence, integer calculations were simulated by introduc-
ing extra rounding instructions.

TABLE I
PERFORMANCE RESULTS

System and CPU Renderer GPU Renderer
Graphics Card resolution fps cycles (%) fps cycles (%)
Intel 720x480 79.8 98.3 155.9 39.5
Pentium D 930 1280x720 36.9 98.1 71.2 37.2
GeForce 6800 GT 1920x1080 13.4 97.2 27.6 48.6
Intel 720x480 83.6 98.5 299.5 75.2
Pentium D 950 1280x720 35.5 98.1 160.7 75.5
GeForce 7800 GTX 1920x1080 15.6 98.7 62.0 68.2

C. Reconstruction of the Motion-Compensated Pictures

After inter prediction, a texture is resident in GPU memory
containing the motion-compensated picture. In a next step,
the motion-compensated picture needs to be reconstructed by
adding residual data to all pixels. This is again a process that
is very well suited for the GPU.

Residual data contain values in the range [-255..255] in
order to correct all predicted 8-bit pixels. This means 9-bit
values need to be stored in GPU memory. The GPU however
does not support any texture formats efficiently storing 9-bit
values. To resolve this issue, 16-bit textures where used where
each texel holds a single 9-bit value. This approach may seem
inefficient as 7 bits are wasted, but requires very little CPU
processing time for data preparation. Indeed, today’s PCI-
Express graphics bus is powerful enough to deliver the data
in time.

D. Intra Prediction

This paper focuses primarily on inter prediction. Intra
prediction is done by the CPU. Therefore, all predicted intra
macroblocks need to be transferred to the GPU. This is
accomplished by packing reconstructed intra macroblocks in
the residual data that are to be uploaded to the GPU. This
way, no extra render pass is needed to draw intra-predicted
macroblocks. That is, if the texture to receive the motion-
compensated picture is cleared to zero first. Another advantage
is that no vertices describing an intra macroblock need to be
uploaded to the GPU.

VI. RESULTS

For our implementation, the DirectX9c API was used to
program the GPU. All shaders were written in the High Level
Shader Language (HLSL) in the DirectX Effects Framework.
The performance of the implemented renderer only utilizing
the GPU was compared to that of an own-developed renderer,
only using the CPU. The results of both GPU and CPU
renderer are shown in Table I. A video sequence containing
one I slice and 127 P slice coded pictures was looped 10 times
and the frame rates were noted. The P slice coded pictures used
one reference picture and one of two CPU cores was disabled.
Video sequences used where driving, shields and blue sky1.

The results show that the GPU renderer outperforms the
CPU renderer with a factor of up to 3.9, rendering 62.0 1080p
frames per second (fps) on an Intel Pentium D test machine

1For a demo, the reader is referred to http://multimedialab.elis.ugent.be/gpu/

TABLE II
PERFORMANCE RESULTS OF GENERIC VERTEX GRID

System and CPU Renderer GPU Renderer
Graphics Card Resolution fps cycles (%) fps cycles (%)
Intel 720x480 79.8 98.3 80.7 32.4
Pentium D 930 1280x720 36.9 98.1 33.4 30.2
GeForce 6800 GT 1920x1080 13.4 97.2 13.9 48.4
Intel 720x480 83.6 98.5 169.6 57.7
Pentium D 950 1280x720 35.5 98.1 64.0 53.3
GeForce 7800 GTX 1920x1080 15.6 98.7 27.9 47.5

with an NVIDIA GeForce 7800 GTX. This enables decoding
of H.264/AVC-sequences of 1080p frames in real time.

More important is the CPU processing power required by
both renderers. The table shows how the frame rates by the
GPU renderer were achieved with relativly low CPU activity.
When processing 720p pictures, only 75.5% of all available
CPU cycles were needed. The CPU renderer used, evidently,
up to 98.1% of all CPU cycles. If we limit the output of the
renderer to 60 fps, the expected frame rate for real-time high-
definition video, the amount of CPU cycles the GPU renderer
consumes drops to 27.1%. This means the GPU renderer can
successfully take over more than half of the decoding process
with low CPU demand [2].

A. Influence of Motion Complexity

The amount of data to upload to the GPU is correlated to the
complexity of motion in the video sequence. The more motion
in a video sequence, the higher the subdivisions in macroblock
partitions and sub-macroblock partitions. This means more
macroblock descriptions and motion vectors are to be uploaded
to the GPU. To examine the influence of motion complexity, a
second GPU-based renderer has been developed. This renderer
uses a vertex grid that represents a video picture composed
of only sub-macroblock partitions. This means that, for ex-
ample, a macroblock will be represented in GPU memory
by 16 quads, all containing duplicates of the original motion
vector. This generic vertex grid is uploaded once, and every
next picture, motion vectors in the vertex grid are updated.
Consequently, the amount of data to be uploaded is invariant.
Hence, this renderer implements a worst-case upload scenario.

Table II shows the results when using the generic vertex grid
with the video sequences that were used in the previous ex-
periment. The results show that even in this case, performance
gains are significant.

VII. LIMITATIONS TO THE CURRENT DESIGN

There are a number of limitations to our current design. The
CPU must be able to predict all intra macroblocks independent
of P-macroblocks, as the latter are located on the GPU.
Read back of these pixels could compromise the pipelined
fashion in which CPU and GPU work together. By using
Constrained Intra Prediction (CIP) during encoding of the
video, the problem can be avoided. The ideal solution would
be to predict the intra macroblocks on the GPU. However, intra
prediction does not translate well into a GPU model. In this
prediction mode, each pixel is dependent on pixels above and
to the left of it. This makes it difficult to calculate pixels in

parallel and does not allow an efficient solution only using the
GPU. Future research will focus on removing this constraint.

Another limitation in the current implementation is the
inability to execute the MC process with more than one
reference picture. A minor performance drop is expected if
more reference pictures are used as more render passes to
compose the motion-compensated picture become necessary.
To minimize the impact, the CPU can arrange constructed
quads in the buffer such that quads are never rendered multiple
times with different reference pictures.

Finally, no in-loop deblocking filter is used. Just as intra
prediction, this filter does not translate well in a GPU-enabled
design because of inter-pixel dependences. In practice how-
ever, the deblocking filter is mostly turned off in case of high-
quality, high-definition video (as blocking effects are minimal).

VIII. CONCLUSIONS AND FUTURE WORK

We achieved motion compensation, reconstruction and vi-
sualization in real time for high-definition video (1080p) on
a PC with an Intel Pentium D 950 and an NVIDIA GeForce
7800 GTX. Our implementation uses significantly less CPU
cycles than a CPU-only based solution (68.2% vs. 98.7%),
while achieving higher frame rates (62.0 fps vs. 15.6 fps).
Fundamental issues and limitations of the architecture of the
GPU were identified and discussed. A significant speed-up
may be expected when the developed design is integrated in an
H.264/AVC decoder compared to a CPU-only based solution.

With this design and implementation, the first steps were set
to develop an H.264/AVC decoder, utilizing the GPU through
Direct3D. Future work will focus on integration of the renderer
in a decoder and GPU-assisted decoding of scalable video
content.

ACKNOWLEDGMENTS

The research as described in this paper was funded by
Ghent University, the Interdisciplinary Institute for Broadband
Technology (IBBT), the Institute for the Promotion of Innova-
tion by Science and Technology in Flanders (IWT), the Fund
for Scientific Research-Flanders (FWO-Flanders), the Belgian
Federal Science Policy Office (BFSPO), and the European
Union.

REFERENCES

[1] G. Shen, G. Gao, S. Li, H. Shum, and Y. Zhang, “Accelerate Video
Decoding With Generic GPU,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, no. 5, pp. 685–693, May 2005.

[2] V. Lappalainen, A. Hallapuro, and T. D. Hämäläinen, “Complexity of
Optimized H.26L Video Decoder Implementation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 7, pp. 717–725, July 2003.

[3] G. J. Sullivan and T. Wiegand, “Video Compression - From Concepts to
the H.264/AVC Standard,” Proc. the IEEE, Special Issue on Advances in
Video Coding and Delivery, vol. 93, no. 1, pp. 18–31, January 2005.

[4] D. Van Rijsselbergen, W. De Neve, and R. Van de Walle, “GPU-driven
Recombination and Transformation of YCoCg-R Video Samples,” in
Proc. of the Fourth IASTED International Conference, J. Silva-Martinez,
Ed., no. 531. Anaheim, Calgary, Zurich: ACTA Press, 11 2006, pp.
21–26.

[5] G. Sullivan, P. Topiwala, and A. Luthra, “H.264/AVC Advanced Video
Coding Standard: Overview and Introduction to the Fidelity Range
Extensions,” in Proc. of SPIE annual meeting 2004: Signal and Image
Processing and Sensors, vol. 5558, Denver, USA, 2004, pp. 454–474.

