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Abstract. We present an online adaptation rule for reservoirs that is
inspired by Intrinsic Plasiticity (IP). The IP rule maximizes the informa-
tion content of the reservoir state by adapting it so that the distribution
approximates a given target. Here we fix the variance of the target distri-
bution, which results in a Gaussian distribution. We apply the rule to two
tasks with quite different temporal and computational characteristics.

1 Introduction

Reservoir Computing is a computational concept that uses a recurrent neural
network (the reservoir) without adjusting the internal weights. Instead, the
reservoir is randomly constructed at the beginning of an experiment, and the
weights of an external linear classifier or regression function are trained to gen-
erate the desired output using the dynamic response (i.e. the activation levels
of the neurons) of the reservoir as input. Many reservoir implementations have
been described in literature, but for this contribution we will focus on sigmoid-
type reservoirs (Echo State Networks or ESNs) [1].

Various ways of constructing reservoir topologies and weight matrices have
been described (see [2] for a brief overview), but for ESNs, one usually creates
a network with a certain sparsity and assigns random weights drawn from a
normal or uniform distribution or from a discrete set. Next, the weight matrix
is globally scaled to set the spectral radius (largest absolute eigenvalue) to a
certain value. While Jaeger proposes an optimal spectral radius of around 0.9
for certain small-scale problems, this is not generally applicable [3]. So far, the
search for an optimal reservoir remains partly based on experience, and partly
on a brute-force search of the parameter space. Moreover, the variance on the
performance across different reservoirs with the same spectral radius is still quite
substantial which is also undesirable. It is clear that a computationally simple
way to adapt the reservoirs to the task at hand without requiring a full parameter
sweep or hand tuning based on experience would be welcome.

2 Intrinsic plasticity for tanh activation functions

Intrinsic plasticity (IP) [4] is an unsupervised, bio-inspired, local adaptation
technique that adjusts the neuron’s excitability in order to maximize the infor-
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mation content in the neuron output, given certain constraints. Here, informa-
tion content is expressed as the mutual information between the distribution of
the neuron input px(x) and the distribution py(y) of the neuron activation level:

I(py, px) = H(py) − H(py|px) (1)

Here, H(py(y)) is the entropy or ‘uncertainty’ of the variable y and H(py|px)
can be interpreted as a noise factor inside the neuron. If we assume the latter
term to be constant, maximizing the mutual information reduces to maximizing
the entropy of the variable y:

Hmax(py) = max
p

n
∑

i=1

py(yi) log(py(yi)), (2)

where n is the number of observations of y.
The activation function is tuned so that the distribution of the neuron’s ac-

tivation approximates a desired distribution. The similarity between the desired
theoretical distribution ft and the effective empirical distribution fy is expressed
in terms of the Kullback-Leibler divergence:

DKL(fy, ft) =

∫

fy log

(

fy

ft

)

dy. (3)

As mentioned before, IP tries to maximize the information content. Given
the constraints, certain distributions maximize the entropy of a stochastic vari-
able. In [5], IP is derived for neurons with a Fermi-type activation function
yfermi = 1

1+e−ax−b , using the biologically inspired constraint that the neuron
tries to maximize information while bounding the metabolical requirements,
which means that the mean activation level is set to a desired value. Among
all positive distributions with a fixed mean, the exponential distribution is the
one with the maximum entropy. Thus, IP will try to drive the distribution of
the neuron’s activation levels towards a desired distribution by minimizing the
Kullback-Leibler distance between the actual and the desired distributions.

When applied to Reservoir Computing, IP has been shown to increase per-
formance on a variety of benchmark problems [5]. However, previous work on
IP focuses on the combination of the Fermi activation function and the expo-
nential output distribution, while traditionally analog reservoirs are built from
tanh-type neurons. This is not a significant issue, since both activation func-
tions can easily be transformed into each other using tanh(x) = 2yfermi(2x)− 1.
However, while the exponential target distribution is a direct consequence of the
biologically plausible constraint on the mean, it might be beneficial to abandon
this constraint. Indeed, if we fix the desired variance instead of the mean, the
maximum-entropy output distribution is the Gaussian.

Another possible advantage of using Gaussian IP, is the fact that the dynamic
evolution of the adapted reservoir might result in a Gaussian process. If this
is the case, it would mean that the theoretical results on Bayesian classifiers
and regressors that operate on Gaussian processes are applicable, such as the



fact that the confidence of a classification can be evaluated immediately and
accurately. However, further research is needed to substantiate this.

There is another difference between fermi neurons adapted with IP and tanh
neurons adapted with Gaussian IP: in the former case, if one wants to have sparse
activity (meaning an exponential output distribution), the output activation has
to be close to zero. This is mainly caused by the bias of the fermi function being
afjusted. For these fermi neurons, this means they operate in a highly non-
linear regime. The tanh non-linearity, on the other hand, is mainly active in the
linear regime (around zero) due to the Gaussian distribution. Thus, previous
research regarding the spectral radius of the connection matrix is not applicable
for fermi-type activation functions once they have been adapted using IP, while
it is much more relevant in the case of the tanh neurons.

3 Deriving the learning rule

To adjust the IP learning rule for tanh activation functions and a Gaussian target
distribution, we formulate the following minimization problem:

fy,opt = arg min
fy

DKL(fy, ft), (4)

where ft is the Gaussian distribution. For the Kullback-Leibler divergence
in this case this yields :

DKL(fy, ft) =

∫

fy log





fy

1
√

2πσ
e−

(y−µ)2

2σ2



 dy (5)

=

∫

fy log(fy)dy +

∫

fy

y2

2σ2
dy −

∫

fy

2µy

2σ2
dy + C (6)

= E

(

log(fx) − log

(

∂y

∂x

)

+
1

2σ2
y2 −

µ

σ2
y

)

+ C, (7)

where C are constant terms, and the relation fy∂y = fx∂x is used.
We use a generalised activation function yi = tanh(aixi + bi), where xi is

the total weighted input to the neuron i, ai the local slope of the sigmoid and
bi the local bias. We use stochastic gradient descent for the a and b parameters
as follows:

∂DKL

∂a
= E

(

−
µx

σ2
+

xy

σ2
(2σ2 + 1 − y2 + µy) −

1

a

)

(8)

∂DKL

∂b
= E

(

−
µ

σ2
+

y

σ2
(2σ2 + 1 − y2 + µy)

)

(9)

From this, we get the following online learning rule using a learning rate η:



∆b = −η
(

−
µ

σ2
+

y

σ2
(2σ2 + 1 − y2 + µy)

)

(10)

∆a =
η

a
+ ∆bx (11)

Thus, we now have an online reservoir adaptation rule inspired by intrinsic
plasticity, for tanh activation functions and a Gaussian target distribution.

4 Experimental results

We investigated the influence of Gaussian IP for two different benchmark tests
with quite different computational and temporal properties. The first is a tenth-
order NARMA system identification task, where the readout is trained to model
the following system:

y(k + 1) = 0.3y(k) + 0.05y(k)

[

9
∑

i=0

y(k − i)

]

+ 1.5u(k − 9)u(k) + 0.1 (12)

where in both testing and training the input u(k) are drawn from a uniform
distribution over [0 0.5]. 1. This task is rather difficult since it is highly nonlinear
and it requires a substantial amount of memory to accurately reproduce the
output. The performance is measured as normalized root mean square error
(NRMSE), using tenfold crossvalidation over the training set consisting of 10
examples of 1100 timesteps each, of which the first 100 are used to warm up the
reservoir and were not regarded for the error measure.

For these experiments, we first constructed a reservoir of 100 neurons with a
given spectral radius and sparse connectivity of .1, without output feedback, and
evaluated the performance on the benchmark tests. Next, we applied Gaussian
IP during 5 epochs (i.e. every example of the dataset was presented five times)
with a learning rate of η = 0.001 in order to determine the optimal slopes a and
biases b for each neuron. Finally, we re-evaluated the reservoirs on the same
task.

Figure 1 shows the effect that Gaussian IP has on the distribution of the
activations of the neurons in the reservoir. Before Gaussian IP, the histogram of
the reservoir activation values is very spiky and irregular, while after only five
epochs of Gaussian IP the activation values nicely follow a Gaussian distribution.

Figure 2 shows the performance on the NARMA task as a function of the de-
sired variance of the output distribution is (left, with Gaussian IP) and the spec-
tral radius (right, without Gaussian IP). Note that both figures have the same
minimal error. Further, when we regard both variables as tunable parameters,
the figures show that Gaussian IP reduces the dependence of the performance
on the tuning parameter. More importantly, the results also show that for an

1Only u(k) is supplied as input to the reservoir, and not u(k − 9).
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Fig. 1: Histograms of activation values of a reservoir of 100 neurons for a uniform
random input before (left) and after (right) 5 epochs of Gaussian IP.
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Fig. 2: Performance on the narma task as a function of desired variance (using
Gaussian IP) and spectral radius (without Gaussian IP).

individual parameter setting, the variation of the performance is also reduced
when using Gaussian IP. Thus, far less random reservoirs need to be constructed
to accurately evaluate certain reservoir settings.

The second task is speech recognition of isolated digits, where the training
set consists of 500 samples spoken by five different female speakers. Due to space
limitations we refer to [2] for more details on both benchmark tests. We have
run similar experiments as for the NARMA case, and we can again conclude
that the optimal values lie very close to each other but that the variance on the
performance is smaller for the Gaussian IP case : we get an error of 2.04 ± .91
by setting the optimal spectral radius of 1.2, and 2.42± .6 by using Gaussian IP
with a desired variance of .1.

By changing the slope a of each neuron, the effective spectral radius of the
connection matrix is also changed, since the total input to each neuron is scaled.
Thus, in order to compute the effective spectral radius ρeff , we need to multiply
every row of the connection matrix with the slope of the corresponding neuron.
Figure 3 evaluates the influence of the desired variance on the effective spectral
radius. The figure on the left compares ρeff for both a traditional, random
topology and a ring-shaped 1D lattice, where each neuron is only connected to
its eight nearest neighbours and only one neuron receives the external input.
The latter topology is very specific, and as such the spectral radius is useless
as a global scaling measure: when increasing the spectral radius, the behavior
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Fig. 3: Effective spectral radius vs. desired function, for a random and 1D lattice
topology (left), and for a random topology with different initial spectral radii
(right).

of these reservoirs abruptly switches between only one active neuron and the
whole network exhibiting chaotic, oscillatory behavior. Nonetheless, the results
show that Gaussian IP has similar effects on the effective spectral radius of both
topologies, and we have found that with Gaussian IP useful dynamics can always
be obtained. Both figures show a strongly nonlinear relation between the desired
variance and ρeff which means that the former is not just a reformulated measure
of the latter. Also, note that ρeff depends only slightly on the initial spectral
radius as is apparent from the figure on the right, but this might be due to the
fact that the rule hasn’t fully converged yet.

5 Conclusions and future work

We have presented and derived an online adaptation rule for reservoirs that
maximizes the information content of the reservoir states based on a constraint
on the variance of the state distribution. This results in normally distributed
reservoir states, perhaps yielding a Gaussian process. We have evaluated reser-
voir performance and effective spectral radius on two benchmark tests with very
different characteristics. Future work includes a thorough investigation of the
influence of IP on the reservoir dynamics, the search for a way to decrease the
influence of the learning rate on the convergence and further research into the
applicability of theoretical results from the field of Gaussian processes.
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