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Abstract—Public cloud computing infrastructure offers re-
sources on-demand, and makes it possible to develop applications
that elastically scale when demand changes. This capacity can be
used to schedule highly parallellizable task workflows, where in-
dividual tasks consist of many small steps. By dynamically scaling
the number of virtual machines used, based on varying resource
requirements of different steps, lower costs can be achieved, and
workflows that would previously have been infeasible can be
executed. In this paper, we describe how task workflows consisting
of large numbers of distributable steps can be provisioned on
public cloud infrastructure in a cost-efficient way, taking into
account workflow deadlines. We formally define the problem, and
describe an ILP-based algorithm and two heuristic algorithms to
solve it. We simulate how the three algorithms perform when
scheduling these task workflows on public cloud infrastructure,
using the various instance types of the Amazon EC2 cloud,
and we evaluate the achieved cost and execution speed of the
three algorithms using two different task workflows based on a
document processing application.
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I. INTRODUCTION

The rise of cloud computing enables elastic on-demand
resource provisioning. This technology makes it possible to
improve existing applications, or to create new types of
applications that were previously not feasible. A class of
services that can be improved using cloud technologies are
document processing applications. Document processing appli-
cations handle large amounts of documents, and apply different
tasks, such as extraction of metadata, processing, logging and
archiving, to the documents. While individual documents only
require a small number of different steps, and a limited amount
of computation time, very large batches are processed at once,
leading to significant system requirements. The processing of
these batches is subject to performance constraints in the form
of deadlines.

While these workloads could be executed using a fixed
set of servers over a long time period, the elasticity of cloud
environments allows its users to vary the amounts and types
of servers during execution. This elastic scaling of resources
in public clouds allows the application to better exploit the
potential workload parallelization, thus executing tasks faster,
making it possible to achieve deadlines that would previously
not have been possible. The pay-as-you-go nature of public
clouds on the other hand ensures only the resources that are
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Fig. 1: The Public Cloud Cost-Aware Workflow Scheduling
(PCCAWS) problem takes as input a description of the public
cloud instance types and a workflow description, and returns
the cheapest schedule that can be used to plan the tasks,
making use of the different cloud instance types.

actually used are paid for, potentially reducing the cost of
executing the workflow.

This public cloud task scheduling differs from regular
scheduling techniques, as different billing modes are used,
and the number of resources that can potentially be used is
virtually unconstrained. Furthermore, the presence of multi-
core instances increases the problem complexity: as many
of the offered servers contain multiple cores, it is possible
to dedicate individual tasks to specific cores, thus running
multiple tasks in parallel on a single server. The billing models
used within our problem formulation are based on those
of Amazon EC2, Microsoft Windows Azure and Rackspace,
where different instance types can be used, and where the cost
of using instances is billed for every interval (typically an hour)
during which the server is used. We only focus on cost-aware
scheduling of tasks by users of public cloud infrastructure,
billing itself is handled by existing mechanisms implemented
by the cloud provider.

In this paper, we focus on the scheduling of task workflows
on public cloud infrastructure, a problem we refer to as the
Public Cloud Cost-Aware Workflow Scheduling (PCCAWS)
problem. We determine how a single workflow, consisting
of multiple tasks such as unzipping data files, validating,
processing and archiving, can be provisioned in a cost-efficient
way. The different tasks themselves can be split into many
parallelizable steps. In other words, we focus on scheduling
workflows which consist of several tasks, and where each
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task consists of several individual steps. These steps can be
executed independently from each other. As the steps of the
task can be executed independently, the task itself is parallel-
lizable. We take information concerning the workflow, such
as task complexity, relations and deadlines, and information
related to the public cloud infrastructure such as the available
instance types, and their performance and cost into account.
An overview is shown in Figure 1.

Within this paper we address three research questions:
(i) How can the PCCAWS problem be represented formally?
(ii) Which heuristic and optimal approaches can be formu-
lated to solve the PCCAWS problem? and (iii) What is the
performance, both in achieved cost and execution speed, of
these heuristic algorithms compared to an optimal ILP-based
algorithm? To achieve this, we developed a formal mathe-
matical model, which we implemented using a commercial
Integer Linear Programming (ILP) solver, and two heuristic
approaches. The result of the optimization algorithm is a
schedule that contains the different instance types used by
the solution, which describes when the different task steps are
executed on each instance. To evaluate this approach we used
it to plan the load of multiple large workflows in a document
processing use case. The resulting schedule can be used for
two purposes: (1) it can be used purely to schedule the task
workflow, by creating different Virtual Machines (VMs) based
on the schedule and running them, and (2) it can be used to
estimate the cost with which it is 100% certain that the task
workflow can be executed.

In the next Section, we will discuss cloud and scheduling
related work. Afterwards, in Section III we will describe the
formal problem model. Section IV describes both optimal
and heuristic algorithms. Subsequently, Section V describes
the evaluation setup, which is followed by the evaluation in
Section VI. Finally, Section VII describes our conclusions.

II. RELATED WORK

Our approach has similarities to different cloud task
scheduling approaches [1], [2], [3], but focuses on the schedul-
ing a large number of small tasks, which requires a more fine-
grained control than the usual VMs used in these approaches.
In effect, our algorithms determine the tasks that must be
grouped together in one VM.

The problem we discuss differs from surge computing [4],
[1], where parts of applications and workflows spill over from
a private cloud to a public cloud, and from partial cloud
migration [5], because in our approach, the entire workload
is short-lived and executed in its entirety on the public cloud
environment. The short-lived nature of individual steps ensures
they do not need to be migrated during their execution.
Our approach could be adapted to be used in hybrid cloud
environments consisting of private and public environments, or
in an environment containing multiple clouds, but then network
costs would have to be added to the model.

In cloud environments, application placement [6], [7] is
used to determine on which physical machine application
instances are executed. In our approach, the granularity of
the tasks that must be placed is much higher, while the
tasks themselves are shortlived. Furthermore, only the instance
type must be determined, and which tasks are executed by

which instance. After this, the underlying cloud environment
will make use of application techniques to actually place the
resulting instances.

In [1], the authors focus on cost-optimal resource provi-
sioning of batch workloads with deadlines, and define a binary
integer problem to solve the provisioning problem. While
the authors take time aspects into account, this is in 1 hour
timeslots. We however focus on task workflows consisting of
a very large number of small parallellizable tasks, for which
much more finegrained time information is needed. We also
present heuristic approaches to solving the problem that scale
better than ILP-based solutions.

Our work has similarities to scheduling problems for
production processes. Many such scheduling problems are
presented as online problems, but this restriction is not needed
as the tasks are known before execution. Furthermore, the
presented problem differs from classical on-line scheduling
problems [8], [9], as in our approach, the potential amount
of resources is infinite, different resource types with varying
performance are possible, and that goal is cost minimization
rather than makespan minimization, as the latter would be
trivial when infinite resources are available. Our approach
further differs form generic production scheduling because
the cost formulation of using servers in clouds is particularly
complex, as we use server cores as resources for task
execution, while it is server use that impacts billing intervals.

There are also similarities to project scheduling problems,
where a schedule is determined to execute a sequence of
tasks by a given deadline on a specified amount of resources.
The main difference with the resource constrained project
scheduling problem [10], is again that the amount of usable
resources in a cloud environment is virtually unconstrained,
and that computing the cost of the used resources is non-trivial.
Furthermore, determining the duration of tasks is also more
complex, as task duration is influenced by the machine upon
which the task is executed. The problem we consider further
differs from these problems as the number of steps executed
in a workflow is much larger.

III. FORMAL MODEL

The various symbols used in this section are shown in
Table I. We will first describe the optimization objective, after
which the different model variables are discussed. Finally we
will describe the different constraints used in the model.

A. Optimization objective

The objective of the model is to determine a configuration
where all tasks are executed at a minimal cost. For every
server instance i, this cost can be determined by calculating
the product of the cost of using a server during an interval,
intervalCost(i), with the number of intervals during which the
server is used, referred to as intervals(i). The final expression
is shown in Equation (1), where these costs are summed for
all servers instances i ∈ I .

min

(∑
i∈I

intervalCost(i)× intervals(i)

)
(1)



B. Model parameters

The model makes use of a collection of server types S,
that represent the different types of servers offered by the
cloud platform. Each server type s ∈ S has a billing interval
interval(s) and a cost intervalCost(s), which is billed for
every instance of the server type for every interval during
which the instance is used. For most cloud providers, this
billing interval equals one hour for all available server types.

A solution contains a collection of servers instances I .
Each instance i ∈ I has a type s ∈ S, referred to as type(i).
While the number of servers within the cloud is assumed to be
unlimited, the model makes use of a finite set of servers. We
make use of a simple algorithm to determine a feasible small
server collection, which we will discuss in Section III-D. It is
possible for some of these servers to remain unused.

A collection of cores C, on which tasks are scheduled is
used. Each instance i of type s ∈ S has a set of one or more
cores, referred to as cores(i). The number of cores a server
has is determined by its server type, and is represented by
coreCount(s). Every core of a server of type s ∈ S has
a capacity, referred to as capacity(s), that determines the
amount of operations a core can execute per time unit.

All of the properties of servers, their cores, and the number
of cores, are contained in the server type, of which the server
is an instance. In the following equations, these properties will
need to be used for both servers and cores. To shorten these
equations, we make it possible to refer to properties of server
types using the core c or instance i as arguments. When a
property, such as capacity is applied using an instance i ∈ I
as an argument, the server type is determined using type(i).
Similarly, when a core c ∈ C is used as an argument, the
instance i ∈ I for which c ∈ cores(i) is used.

Tasks consist of multiple steps that can be executed in
parallel. A task t ∈ T contains stepCount(t) steps, and each
individual step has a computational complexity complexity(t),
which corresponds to the required CPU cycles of step. Differ-
ent tasks can be dependent on each other: if before(t1, t2),
the task t2 can only start after all of the steps of task t1 have
finished executing.

C. Model constraints

Each task has a start time, and an end time, indicating
when the task starts and ends its execution. Each task also has
start and end times on each of the cores c. The task start time
occurs before the task starts executing on any of the cores,
and similarly, tasks end after their execution on all cores have
ended. Finally, every task must end before the deadline, D.
This is expressed in Equations (2) to (5), which are added for
all tasks t ∈ T and cores c ∈ C.

start(t) ≤ start(t, c) +D × coreUnused(t, c) (2)
start(t, c) ≤ end(t, c) (3)
end(t, c) ≤ end(t) +D × coreUnused(t, c) (4)
end(t) ≤ D (5)

These three constraints are only relevant for cores that are
actually used. Because of this, the equations make use of an
additional variable, coreUnused(t, c), which takes on value 1

TABLE I: The different symbols used in Section III.

Input Variables
Symbol Type Description
S The set of server types.
I The set of server instances.
C The set of server cores on which individual exe-

cution threads can run.
T The set of tasks.

type(i) S The type of an instance i ∈ I .
coreCount(s) I>0 The number cores in a server of type s.

cores(i) P(C) A set containing the cores of an instance i.
capacity(s) R>0 The amount of operations a core of server type s

can execute per time unit.
interval(i) R>0 The time interval by which the use of an instance

i is measured.
intervalCost(s) R>0 The cost of using a server of type s during an

interval.
stepCount(t) I The number of undividable steps in task t.
complexity(t) R>0 The processing capacity required for executing a

step of a task t.
D R>0 The deadline by which the tasks must be com-

pleted.
Decision Variables

Symbol Type Description
start(t) R≥0 The time when the execution of task t starts.
end(t) R≥0 The time when the execution of task t ends.

start(t, c) R≥0 The time when the execution of task t starts on
core c.

end(t, c) R≥0 The time when the execution of task t ends on
core c.

startSU(i) R≥0 The moment in time when the instance i starts
being used.

endSU(i) R≥0 The moment in time when the instance i stops
being used.

processed(t, c) I The number of steps of a task t that are processed
on a core c.

intervals(i) I The number of intervals of billing time during
which the instance i is used.

ord(t1, t2, c) B This binary variable has value 1 if task t1 is ex-
ecuted before task t2 on core c, and 0 otherwise.

coreUnused(t, c) B This binary variable has value 1 is task t does not
make use of core c, and value 0 otherwise.

if a core is not used, and 0 otherwise. If coreUnused(t, c) takes
on value 1, the task deadline D is added to the inequalities
in Equations (2) and (4), which ensures they are always true.
To ensure the coreUnused variables have correct values, we
make use of Equation (6). This equation ensures coreUnused
can only take on value 1 if the start and end times are equal.

end(t, c)− start(t, c) ≤ D × (1− coreUnused(t, c)) (6)

As previously mentioned, relations between tasks exist. If
a task t1 must end before another task t2 can start, expressed
as before(t1, t2), the relation end(t1) ≤ start(t2) is added to
the model.

The model is used to allocate tasks on cores at a specific
time. The following equations are used to ensure all tasks are
correctly allocated. The duration of a task t ∈ T on a server
of type s ∈ S can be determined as shown in Equation (7).

duration(t, s) =
complexity(t)

capacity(s)
(7)

This constant is then used in Equation (8) which links the
task start and stop times to the number of steps of task t that
are executed on core c. Finally, Equation (9) ensures that the
number of steps that are processed is equal to the step count



of the task, thus ensuring all steps are allocated on a core.

end(t, c)− start(t, c) = processed(t, c)× duration(t, c)

(8)∑
c∈C

processed(t, c) = stepCount(t) (9)

To determine the cost of using a server instance, it is
important to know when it is used for the first and last
times. The first use of a server is before any core starts being
used, expressed in Equation (10), while the server stops being
used after the last core has been used, which is expressed in
Equation (11).

startSU(i) ≤ start(t, c) (10)
end(t, c) ≤ endSU(i) (11)

The cost of using servers is measured in intervals. To
determine the number of intervals used, we add Equation (12)
for every instance i ∈ I .

intervals(i)× interval(i) ≥ endSU(i)− startSU(i) (12)

To support parallel execution of tasks, two additional
constraints are needed to prevent tasks from occurring concur-
rently. For this we introduce additional variables that determine
the order of tasks on a core. If ord(t1, t2, c) is 1, t1 is executed
before t2 on core c, if its value is 0, the tasks occur in the
opposite order. This is expressed in Equations (13) and (14).
These additional variables and constraints are only added if it
is possible for two tasks to be executed concurrently.

end(t2, c)− ord(t1, t2, c)×D ≤ start(t1, c) (13)
ord(t1, t2, c) = 1− ord(t2, t1, c) (14)

D. Initial server configuration

The model makes use of a limited set of server instances I ,
based on a set of server types S. The set I must be chosen in
such a way that there are enough servers to lead to a feasible
flow, but not too many servers ensuring the algorithm execution
does not become too complex. For every server type s ∈ S
that exists, we make a feasible configuration as though only
servers of that type are used. This can be used to determine
the minimal number of servers of the type that are required.

Initially, we place all tasks sequentially, ensuring they
maximally use parallelization, executing only one step for
every core. This ensures each task t makes use of |C|t =
stepCount(t) cores. From this number of cores, we can then
determine the number of servers |I|t = d |C|t

coreCount(s)e of type
s are needed. Using maxt∈T |I|t would yield a possible bound
for the number of servers of type s which could be used within
the model. However, as in the document processing use case
some tasks may contain in the order of 105 or more steps, a
tighter bound is needed.

We use the Server Count Bound (SCB) algorithm, shown
in Algorithm 1, to obtain a smaller estimate on the number
of CPU cores. The first phase of the algorithm determines
a maximum number of cores, as discussed in the previous
paragraph, illustrated in Figure 2a. Afterwards, the tasks using

Data: server type s ∈ S
for t ∈ T do
|C|t ← stepCount(t);

end
σ ←

∑
t∈T duration(t, s);

while true do
|C| ← maxt∈T |C|t;
if |C| = 1 then return 1;
Thigh ← t ∈ T : |C|t = |C|;
δ ←∑
t∈Thigh duration(t, |C| − 1)− duration(t, |C|);

if σ + δ <= D then
for t ∈ Thigh do
|C|t ← |C| − 1;

end
σ ← σ + δ;

else
return |C|;

end
end

Algorithm 1: The SCB algorithm: an approach for deter-
mining a tighter bound on the number of servers.

Task start Task deadline

12 cores

t1 t2 t3 t4

(a) The different tasks using as many servers as possible

Task start Task deadline

3 cores

t1 t2 t3 t4

(b) The result of the packing algorithm

Fig. 2: An illustration on how an upper bound to the number
of servers can be determined. A block represents a single step
within a task.

the most servers are iteratively rescheduled, lowering the
number of cores needed, but increasing the execution time.
This process is repeated, until further rescheduling of tasks
would make the task workflow exceed their deadline. The
result of this process for the example is illustrated in Figure 2b.

The algorithm maintains a collection of values |C|t that,
for every task t, contains the number of cores on which it
is scheduled. Initially, |C|t equals the number of steps in the
tasks. The algorithm also maintains the current task execution
duration σ throughout its execution. In each iteration, the
algorithm determines the tasks that currently use most cores. It
then determines the impact, on the time needed for executing
the tasks, δ, of decreasing the number of cores used by 1. If
σ+δ remains less than D, the core count is decreased and the
next iteration is started. Otherwise, the algorithm terminates



and the maximum number of cores used is returned. The
algorithm makes use of the duration of a task t ∈ T when
it is executed on n cores, which we define in Equation (15).

duration(t, n) =

⌈
stepCount(t)

n

⌉
× duration(t, c) (15)

IV. ALGORITHMS

A. Integer Linear Programming: PCCAWSILP

The model discussed in Section III was used to construct
an optimal algorithm, which we refer to as PCCAWSILP ,
using the CPLEX[11] ILP solver. ILP models make use of
infinite-precision values that can not be represented correctly
using computers. In practice, ILP solvers such as CPLEX
make use of approximations, allowing slight violations of
model constraints. These effects can however lead to infeasible
results, where new tasks are started before the tasks on which
it depends being finished, in particular for more difficult
problems.

CPLEX allows users to define a non-zero parameter ε, and
guarantees constraint violations will always be less than this
ε. If, for example, a constraint a ≤ b exists within the model,
it is possible that a > b in the solution, but it is guaranteed
that a ≤ b+ ε.

By adding ε to the model constraints, we ensure correct
results are achieved. Specifically, we extend Equation (7), and
increase the duration of an individual task by 2ε, resulting in
a modified equation shown in Equation (16).

duration′(t, c) =
complexity(t)

capacity(c)
+ 2ε (16)

B. Server count bounds filling heuristic: PCCAWSSCB

The SCB algorithm, can easily be extended into a simple
heuristic. For every type of server that exists in the system, a
schedule is created, making use of only this type of server.
In this schedule, every task execution duration is chosen
as long as determined by the SCB algorithm discussed in
Section III-D. Effectively, the time allocated for a task by
the algorithm is filled with executions of the task steps. The
final result of the basic heuristic is determined by choosing
the cheapest out of the different schedules.

The algorithm execution speed can be improved by using
multithreading: the largest part of the algorithm execution
consists of generating different schedules for every server
type, a task that can be parallelized. We refer to this heuristic
algorithm as PCCAWSSCB .

C. Result improving heuristic: PCCAWS+SCB
The PCCAWSSCB algorithm is capable of finding a sim-

ple, feasible schedule. The result can however be improved
by automatically applying small transformations to the in-
termediate schedules generated by the basic heuristic. The
PCCAWS+

SCB algorithm automatically tries to execute two
improvements to the result of the basic algorithms:

• Clustering reassignment: All servers of the same
server type are split into their individual cores, after
which the resulting cores are clustered based on their

start and end use times. For this clustering, we make
use of a modified k-means clustering, which is adapted
to limit the cluster size. The resulting clusters of cores
are then combined into new servers. This approach
ensures the use of cores within a server have similar
start and end times, which prevents cores from being
underused within a server.

• Server type changes: This algorithm analyses every
server in the schedule, and tries to replace it with
a server of a cheaper server type. When cores are
unused, or switching to a lighter, weaker server is
possible, this approach ensures the cost of the schedule
is reduced. This approach is particularly useful in
cases where larger servers with more cores are cheaper
to use than equally powerful servers containing less
cores.

The PCCAWS+
SCB heuristic tries both improvements sep-

arately and in sequence, and subsequently returns the schedule
with the lowest resulting cost value.

V. EVALUATION SETUP

In the evaluations, we make use of the Amazon EC2
instances as described in [12]. The performance of the different
instances is expressed by making use of the EC2 Compute
Unit, a reference unit used by Amazon to compare CPU
performance of different instances based on the CPU capacity
of a 2007 Opteron or 2007 Xeon processor [12]. Using
this information, we can estimate the execution times of a
task on the different instance types based on the execution
times of the task on a small instance (Amazon_m1.s). The
costs of using these different instances is chosen based on
information available from Amazon [13]. An overview of the
considered instance types and prices is shown in Table II. We
exclude Amazon micro instances, as they do not have reliable
computational power, making them less suited for intensive
workloads. We refer to this set of server types as Amazon.

It is of note that within a specific server type, costs are
always multiplied by two for doubling the number of cores of
a server. This implies that using an Amazon_m1.xl instance
is equivalent to using two Amazon_m1.l instances. In this

TABLE II: The Amazon instance types, referred to as the
Amazon server type set. (Capacity × Amazon EC2 Compute
Unit, Cost per hours in $/100)

Type Property Value

Standard instances Cores {1,1,2,4}
Amazon_m1.{s, m, l, xl} Capacity {1,2,2,2}

Cost {8, 16, 32, 64}

High memory instances Cores {2,4,8}
Amazon_m2.{xl, 2xl, 4xl} Capacity {3.25, 3.25, 3.25}

Cost {45, 90, 180}

High CPU instances Cores {2, 8}
Amazon_c1.{m, xl} Capacity {2.5, 2.5}

Cost {16.5, 66}

Cluster compute instances Cores {8, 16}
Amazon_cc1.{4xl, 8xl} Capacity {8, 16}

Cost {130, 240}



TABLE III: The evaluation workflows. (Step durations as
executed on an Amazon_m1.s instance)

Name Task Steps Step Duration (s)

Sequential n Unzip 1 35.0
Extract b2× 105/nc 0.5× n
Process b2× 105/nc 0.2× n
Zip 1 90.0

Deadline 120 min
Relations Unzip → Extract → Process → Zip

Parallel n Unzip 1 35.0
Extract b2× 105/nc 0.5× n
Process b2× 105/nc 0.2× n
Zip 1 90.0
Log b2× 105/nc 0.1× n

Deadline 120 min
Relations Unzip → Extract → Process → Zip

Unzip → Log → Zip

case it makes no sense to consider anything but the smallest in-
stances, as if in an optimal solution a larger instance is used, an
equivalent solution can be determined using multiple smaller
instances, and the more instances, the more time the algorithm
needs to execute. We call the set containing only the smallest
instance types from within each group Amazonsmall. Within
the evaluations, the lowest cost achieved by Amazonsmall will
be the same as that of Amazon, but as less server types are
considered, the result can be determined faster.

In practice, it would generally be preferable to use the
larger instances when possible, as managing large numbers
of servers introduces an overhead. To model this, we define
an additional set Amazonmc, which is based on the Amazon
set, but where a small management cost of $0.01 is added for
all servers. This ensures that larger servers are chosen when
possible.

We evaluate the presented algorithms using the Stevin
Supercomputer Infrastructure at Ghent University. Each node
on which the algorithms were executed contains dual-socket
2.5 GHz quad core Intel Xeon L5420 processors, thus having 8
cores, and 16 GB memory. To prevent the multi-tenant nature
of the cluster from impacting execution speed measurements
of the heuristic algorithms, they are measured using 100
executions on an Ubuntu server with Intel Core i3 2.93GHz
processor and 4GiB memory.

The evaluation workflows are shown in Table III. They are
characterized by their name, and an integer value n. The latter
is used to create multiple versions of the workflow, each having
a similar execution load and deadline. Increasing the n value
decreases the number of tasks, and increases individual task
durations. This can be seen as grouping multiple tasks together,
e.g. always executing 1000 steps at once. This decreases the
granularity of tasks, potentially resulting in more expensive
configurations, but also decreases the complexity of the algo-
rithms. The steps, step duration and step counts are estimates
of the workload of a basic document processing flow. Note that
the parallel workflow contains almost 50% more tasks than the
sequential workflow for the same n value.

VI. EVALUATION RESULTS

We evaluate the costs and execution speed achieved by the
PCCAWSSCB , PCCAWS+

SCB and PCCAWSILP algorithms
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Fig. 3: The cost of executing the workflow on the public cloud
using the Amazon and Amazonsmall server type sets. Task
step count = b2× 105/nc

for the Sequential n and Parallel n problems. Varying the n
value of both problems influences the duration of steps and
the number of steps in the workflows. A large n value ensures
many steps are grouped together, decreasing the number of
steps considered by the algorithms. A smaller n value increases
the number of steps used in the model, making it possible
to execute a more finegrained planning. In this section, we
will determine the cost and execution speed in function of
the resulting task step count for a subtask (with a maximum
of 2 × 105 steps when n = 1). All presented graphs were
generated for n values from 30000 to 1. As we found that
the results vary more for lower n values, the datapoints were
chosen accordingly, ensuring there are more datapoints for
lower n values. The range of points is chosen so that the task
step count remains between 2 × 105, the maximum number
of steps of the workflow, and 6, a minimal number of steps.
Smaller step counts were not considered, as those would
increase step execution times too much, making it impossible
to create a feasible schedule that still respects the deadline.



Task start Task deadline

2 cores

3 cores

Idle time

Fig. 4: Increasing the number of steps while decreasing their
execution time can, sometimes, increase the number of cores
needed in a schedule.

A. Algorithm costs

The cost achieved by the different algorithms for the
Amazonsmall server type set is shown in Figure 3. The
quality of the larger set Amazon was measured as well, and,
as expected, yields exactly the same quality results. Figures 3a
and 3b show the sequential and parallel problems respectively.
The PCCAWSILP algorithm is shown only for lower task step
counts, as increasing the step count causes the memory and
time needed for execution to increase significantly. As can be
seen in the figures, for the Amazon and Amazonsmall server
type sets, the PCCAWSSCB and PCCAWS+

SCB algorithm
both lead to the same cost, which is higher than the cost
achieved by the PCCAWSILP algorithm for small numbers
of task step counts. As the step count increases, the cost
achieved by all three of the algorithms decreases until it
levels out at the same cost. This decrease is not monotonous,
as sometimes an increased step count causes worse solutions
to be chosen. These increases in cost also occur at times
for the PCCAWSILP algorithm, indicating this is inherent
to the problem itself, and not just a property of the heuristic
algorithms. The cause is illustrated in Figure 4, and can be
explained as follows: if, for a chosen step size, all steps can
be executed on a small collection of cores, slightly decreasing
the step size, and thus increasing the number of steps, can in
some cases only increase the idle time, and not the number
of steps executed per core. As there are however more steps
that must be executed, this can cause the need to add extra
cores, which in turn can increase the cost of the solution.

When we consider the Amazonmc server type set, where
more differences occur between different server types, the
PCCAWSSCB and PCCAWS+

SCB algorithms at times yield
different results, as shown in Figures 5a and 5b for the
sequential and parallel problems respectively. In the case of
the sequential problem, both algorithms still achieve the same
end result, but for the parallel workflow, the PCCAWS+

SCB
algorithm achieves better results. Again we find that, for
low task step counts, the PCCAWSILP algorithm tends to
outperform the other algorithms, but as step counts increase,
the difference between both decreases.

In all of the considered cases, the PCCAWS+
SCB algorithm,

when executed for the full workflow containing 2 × 105

tasks, obtains the same cost as the best value that could
still be computed by the PCCAWSILP algorithm. When the
PCCAWSILP algorithm is used, good cost estimates can be
made, even when many tasks are grouped together.
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(b) Parallel workflow

Fig. 5: The cost of executing the workflow on the public cloud
using the Amazonmc server type set.
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Fig. 6: The execution times of the algorithms for the Amazon
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TABLE IV: Execution speed of the PCCAWSILP algorithm.
Times are in seconds.

Sequential n Parallel n
Avg σ Avg σ

Amazon 4854.4 8864.9 4407.0 6219.0
Amazonsmall 259.6 810.4 10991.0 15485.4

B. Algorithm execution speed

In Figure 6, we compare the execution times of the
PCCAWSSCB and PCCAWS+

SCB algorithms applied to the
parallel workflow, for both the full set of servers Amazon
and the small set of servers Amazonsmall. The figure shows
that that, for all algorithms, as the number of steps increases,
so does the time needed for the algorithms to execute. Despite
this, even for the maximum task step count of 2 × 105, the
execution times for the different heuristic algorithms remain
between 1.5 to 3 seconds. We also see that the PCCAWSSCB
algorithms execute slightly faster than the PCCAWS+

SCB al-
gorithms, and that using the limited server set Amazonsmall
requires less resources than the larger set Amazon. When
instead the sequential workflow is used, an identical trend is
observed, but the flows generally execute slightly faster, taking
between 1 to 2 seconds to execute for the maximum task step
count. These execution times for the sequential workflow are
omitted due to space constraints, and as they are nearly iden-
tical to Figure 6. The results indicate that PCCAWSSCB and
PCCAWS+

SCB both scale linearly in the amount of task steps.

For completeness we also give an indication of the ex-
ecution times of the PCCAWSILP algorithm in Table IV.
Note that unlike the previous execution speed measurements
these times were evaluated using the Stevin Supercomputer
Infrastructure, as the server used for the previous evaluations
did not have the required memory and computational capacity
to solve the ILP problem. Because of the long execution time
of the PCCAWSILP algorithm, it was executed only once for
every problem, which explains the high standard deviation.
We observe that the PCCAWSILP algorithm requires a pro-
hibitively long time to execute, even when tasks require only
small numbers of steps when large n values are chosen, and
that for smaller n values, the problem can not be solved due to
insufficient memory. This limitation is particularly noticeable
for the Parallel n workflow, as there n values less than 104

failed to execute.

While the PCCAWS+
SCB algorithm only slightly improves

upon the PCCAWSSCB algorithm, it requires only limited
additional execution time, making it a useful addition to the
basic algorithm. Especially as, for both considered workflows,
the PCCAWS+

SCB algorithm is, for higher task step counts,
capable of determining the same result as the best result that
could still be computed by the PCCAWSILP algorithm.

VII. CONCLUSIONS

In this paper, we formally described a model for schedul-
ing workflows consisting of multiple parallellizable tasks on
public cloud infrastructure, a problem we referred to as the
PCCAWS problem, and described an optimal and two heuristic
algorithms to solve the problem. We evaluated the algorithms

through simulations using workflows based on those used in
a document processing applications and the Amazon instance
types. We found that, when individual steps within the work-
flows require a relatively long time to execute, the optimal
algorithms outperform the heuristic algorithms with regards to
achieved cost. As individual tasks become smaller however,
the best heuristic algorithm was capable of finding a solution
with the same cost as the best cost which could be determined
by the optimal algorithm. We also found that the heuristic
algorithms scale well, as all evaluations were executed in at
most 3 seconds.
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