A SCALABLE NETWORK ASIP ENABLING FLOW AWARENESS IN ETHERNET ACCESS

K. Vun Renterghem, D. Verhulst, S. Verschuere,
P. Demuytere, J. Vandewege, Xing-Zhi Qiu

Department of Information Technology
Ghent University / IMEC
Sint Pietersnieuwstraat 41, Ghent, Belgium
email: Koen.VanRenterghem(@intec.ugent.be

ABSTRACT

li this paper we rescarch un FPGA based Application
specific Instruction Set Processor (ASIP) tailored to the
needs of & flow aware Ethernet access node. The processor
s an architeclure optimized to handle flow processing
Li=ks such as parsing, classification and packel
manipulation.

The VI.IW instruction set allows for high degree of
paradlelism among the functional units inside the ASIP and
has dedicated instructions to accelerate typical packet
prucessing 1asks. This way, @ single processor is capable of
handling the complete throughput of a gigabit Ethernet link.

To reach the target of a 10 Gbit's Ethernet access node
wveral processors operate o parallel in a multicore
~nyvironment. Apant from scalability, programmability is
dso un important feature. Therefore, the processor is
developed using a retargetable ool suite, creating the
lirdware and an opuimized C compiler out of a single
mocessor deseription.

1. INFRODUCTION

| thernet based access platforis are becoming the vehicles
w offer triple play scervices {voice, video, data), as well as
mnovative and advanced services with high world-wide
~rowth potential such as peer to peer traffic or gaming. The
Jrivers of the success of Ethemnel in enterprise networks are
Jlso doving the access technology. [tis hence expected that
luture high bandwidth access infrastructures with fibre to
e cabinet, building or home will be Ethernet based.
| cgacy networks for voice, data and video are converging
mto a single network, new services are emerging and
l-thernet is becoming the transport protocol of choiee [1].

A means to support existing and new services in
I'thernet based access 1s the introduction of ATM-like
leatures such as “flow awareness™. Traffic will be treated
Jitterently depending on the subscriber to whom o belongs,
and the type of service it represents [2] [3] [4].

649

| 4244-0312-X/06/$20.00 ;2006 IEEE.

In a flow based approach several features of packets are
extracted (layer 2 up to layer 4) 1n an access node and then
used as input for classification, The outcome of this process
reveals the service tied to the inspected packet, allowing it
1o be funther processed and routed accordingly.

The scope of this paper is the design of a processor
active in the dala path of such a system. The researched
solution must be scalable, flexible, easy to program and
maintain, These design specifications resulted in the
development of a packet processing ASIP to be deployed in
an FPGA based multicore processing architecture
supporting lne rates up to 10 Gbit's and corresponding
packet rates as high as 14.88 MPacket/s.

In order to minimize the processing time, algorithms are
oflen described in customn langusges or assembly. Here, a
retargetable € compiler, capable of optimizing for
instruction levet parallelistn allows easy ASIP code
development, while mamntaining efficiency. The
development is targeted at a Xilinx Virlex4 LX200-11
FPGA.

2. DATA PLANE OF A FLOW AWARE ACCESS
NODE

A complete tlow aware Ethernet based access node consists
of several building blocks each dedicated to specific tasks
such as parsing, classification, fillering, queuing, statistics,
traffic engincering, packet manipulation, etc... The scope
of this paper is the development of an ASIP optimized for
the three key building blocks: parser, classifier and packet
manipulator. The specifications of the internal architecture
of the ASIP are derived from a survey of typical algorithms
running within the aforementioned building blocks.

Parsing s targeted at IPv#/IiPv6 encapsulated in
Ethernet with TCP or UDP as transport protocol. The
algorithm supports a wide variety of Ethemet standards
such as (stacked) VLANs and even the upcoming envelope
format defined in [EEE 802.3as with frames up to 2 KB.
PPPoE, often used in xDSL access networks as
authentication protocol, is also supported.

The parsing algorithm decodes the protocol stack,
extracts fields used to define a flow and stores them in a
data structure called a ‘ticket’. Control plane traffic such as
ICMP, IGMP, ARP and others will be identified and
flagged in the ticket to be forwarded to a dedicated control
plane processor.

The wvenfication of checksums is not part of the
algorithm. At Layer 2 the CRC can easily be verified at
wire rate before assigning the packet to an ASIP. The
verification of Layer 3 and 4 checksums requires in depth
knowledge such as the type of payload, optional headers,
ete. Therefore it is performed in a dedicated hardware

block using the information gathered during parsing and
classification.

The classification algorithm transforms the extracted
header fields into a search key which will be applied to an
external TCAM (Ternary Content Addressable Memory).
The result of this process is a ‘flow identifier’, used
throughout the system to perform further processing,

Based on the flow identifier, the packet manipulator
can aller header or payload ficlds and recalculate the
checksums. Typical operations are the insertion of a VLAN
tag, the decrement of the 1P TTL field, ete...

These Ihree algorithms were translated into C code and
served as g starting point for the ASIP architecture. From
then on several iterations were performed exploring
architectural aspects such as instruction level paraliclism
(ILP) and extensions of the C language with compiler
known functions (aka intrinsics) to minimize the execution
time.

3. DESIGN FLOW

The ASIP was built using the Chess/Checkers retargetable
toel suile of Target Compiler Technologies [5]. The
environment consist of a comptler, (dis)assembler,
instruction set simulator, hardware description language
generator and lest program generator.

The processor is described in a high level processor
modeling language, which serves as input for all tools,
providing consistency throughout the design flow.

After describing the ASIP, the compiler and instruction
set simulator can be pgenerated to get quantitative
information about the performance of the archilecture. The
performance mmpact of design choices such as ILP and the
extension of the compiler with compiler known funclions
can be easily evaluated. The next step is the automatic
generation of VHDL or Verilog for the aschitecture, which
can be synthesized and verified against the instruction sct
simulator.

4, MULTICORE SUPPORT

The requirement of handling the maximum frame rate
{14.88 Mpackets/s) of a 10 Ghit's Ethernet link leaves an
ASIP only 67 ns to finish ils tasks. When running at 120
MHz only 8 clock cycles are availuble. Clearly 4 multicore
architecture is needed (o handle the complete throughput.
Several architectures are possible. Multiple cores can be put
in a pipeline, cach performing a part of the complete
processing algorithm of (he same packet. While easy to
mmplement, (his architecture requires the packet algorithm
to be split in equal parts 10 avoid idle time on the ASIPs. An
alternative is to use a pool of processors all working
parallel on different packets. ASIPs running idie arc
avoided, but cach ASIP must have access 1o all external
peripherals and high speed busses will need Lo traverse the

650

FPGA fabric. A mixture of both approaches, a pipeline of
ASIP pools, combines the best of both werlds.

To support any of the aforementioned setups, a suilable
memory architecture, taking optimal - advantage of the
resources scaltered over the FPGA fabric, was developed.

() - Controller .)
______ L -
-
—{PKMOMA) 3 !
g) g
P S 3 5 .
(. § E ;m,
! H
| PKM L
Bank 0 VT e E

__________ v . 3 DM
43,-;_.) Eﬂemow Mapped IO) Lauf.-"-

Fig. . Exiernal ASIP inlerfaces

Each ASIP has access o lwo 4 Kill duai ported
memories. One port s exclusively reserved tor the ASIP
and the other one interfaces with the multicore
environment. The two physical memories are divided into
regions, according to their function, The Packet Memory
(PKM) consists of two equal basks of 2 KiBB and stores the
packet to be processed. The organization of the remaining
memory is somewhat different: 256 bytes Ticket Memory
(TKM) and 3840 bytes Data Memory (DM). The ticket
memory itself is further divided into two equal bunks of 128
bytes each. This memory stores the licket data structure
containing the context linked to u packet. Each ASIP can
add results to it or use it as input for ils own tusks. Apart
frum these two physical memories, a dedicated 32 bit
memory interface is available used lo map exlemnal
peripherals onto its memory space.

The goal of the memory architecture is (o Keep the
processor occupied at afl times. The bank sclect signal
makes the processor operale on a specific bank, While
packet processing is ongoing, the second memory port can
he stcessed 1o write new data into, or read previous results
from ihe inactive bank, wilhoul the risk of data corruption.
Buffers for rate adaptation are not needed in the sysiem as
each DMA engine interfaces with two 32 bit wide Block
RAMSs combined into a single 64 bit wide bus running at
200 MH=.

For the programmer, bank switches are transparent and
the mechanism needs minimal support in the code. Each
titne the running algorithm concludes ils work on a packet,
a ‘halt’ tnstruction must be issued. This instruction drives
the external halted signal, flushes the processor pipeline,
stops the issuing of new instructions and resets the program
counter L the beginning of the algorithm,

5. ANIF DATA PATH

A schematic overview of the ASIP data path is shown in
Fig. 2. The data path consists of a hybrid 16/32 bit
architecture,

The general register file (REG_DATA) and the
associated arithmetic and logical unit (ALU) are both 16 bit
wide. As most packet header fields requiring ALU
processing do not take more then 16 bit, the cost for a
complete 32 bit architecture is rather high. Furthermore,
cight register entrics proved to be sufficient to let the
envisaged algorithms execute without register spilling.

Only the Load/Store part of the processor is 32 bit. Its
architecture is quite flexible as any two storages are
interconnected on a common, 32 bit Load/Store Bus. The
source and destination addresses are calculated in two
address generation units (AGU) operaling on a 12 bit wide
pointer register file (REG_PTR}), also with eight entries.

Flexible packet processing requires the reading and
writing of 8, 16 or 32 bit values from memory at byte
boundaries. A memory conlroller selecting the right bytes
from two 4 byte wide Xilinx Block RAMs (BRAMs) can
provide the desired functionality with an 8 to | multiplexer.
However, this design proved to be a critical path.
Configuring the BRAMs with 2 byte wide oulputs removes
the possibility to handle byte aligned 32 bit accesses, but
still allows them to be executed aligned at word boundaries.
This configuration has slightly less flexibility, but only
requires a 4 1o | multiplexer, effectively relaxing the critical
path. Memory addresses are calculated using two AGUS,
one for source addresses and one for destination addresses,
Three addressing mechanisms are supported: immediate
addressing, postincrement addressing and indexed
immediate addressing,

The processor makes use of instruction level
parallelism, resulting in a VLIW ASIP with 72 bit
instruction words stored in a dedicated program memory
(Harvard architecture). The wide instruction word allows
for a Load/Store operation to be combined with two AGUs
updating the pointer registers, a checksum update and an
ALU operation.

The pipeline is five stages long, although most
instructions only need three stages to finish. The first stage,
Instruction Fetch (IF), is followed by the instruction decode
(ID) stage. Apart from generating various enabie signals in
this stage, both AGUSs already calculate addresses and apply
them to the memuries, enabling the actual load or store
operation tn the next pipeline stage, called Execute 1 (El).
All ALU operations are read-modify-write instructions
executed in the El stage. The next two pipeline stages E2
and E3 are exclusively used in the checksum engine.

Packet processing code is quite control intensive and
therefore special care was taken optimizing the branch
penalties. The compiler supports both delayed and stalling
branches [6]. Furthermore, the wide instruction set allows

051

the encoding of multiple jump targets into a single
instruction, which is quite usefull for accelerating C-style
switch-case statements.

-4

‘_:! AGLI J
REG_PTRMH|

SN R015/pE0"
!
&

REG_DATAA| i~
P B - v oo A AL
THM S

P ’
N/ Checksum
= REG, CSUM2] Enging }
o

Read-Befora-Wrile Bus o --_T

Fig.2. ASIP Data path

Efficient algorithms have been developed to
incrementally recalculate the checksums used throughout
the TCP/IP stack [7]. Essentially, the checksum is updated
with the ones complement subtraction of the new and the
old contents, taking into account that packet headers
conlain he bitwise inversion of the actual checksum value,

This means that the old data has to be fetched from
memory and subiracted from the current checksum before it
can be overwritlen with new data. The performance of such
packet modifications can be greatly increased using the
‘read-before-write’ mode of the Xilinx BRAMs. This
feature makes the old memory conlents appear at the read
port every time new data is written in.

We take advantage of this feature and update a
dedicated bus (Read-Before-Write Bus) each time data is
writicn to a memory. A single store instruction to memory
is sufficient to produce all necessary data to update the
checksum: The new dala zppears on the Load/Slore bus in
the El siage and the old data is made available on the Read-
Before-Write Bus one cycle later in the E2 stage (Fig. 3.).

Sluge Stage Stage
E1 E2 E3
.!r < : PR g W o
o — N
po— T —

Rad-Briore-Wiite Bus . o ™ —
...) fa !
: < #:}""‘; ; WP + REG_CSUM|1)
L'y —q] .'\‘_1

Fig.3. Checksum Engine

6. PERFORMANCE ANALYSIS

6.1. Area & Speed

The design was implemented in a Xilinx Virtex 4 LX200-
IT FPGA and takes about 1600 slices, of which 84% is
used for the ASIP and the remainder contsins the
controllers supporting the interaction with the top level.
This allows for 48 ASIPs to be placed inside the FPGA, if
extra logic for external interfaces is not taken into account,
The biggest entities in the ASIP are the register files (32%),
the checksum engine (10%), the ALU {9%), the decoder
(8%) und the global load/store bus (4%).

A post place and route frequency of 120 MHz can be
reached. This corresponds to a clock cycle budget of 80 to
complete a parsing, classification or packe! manipulation
algorithm, taking the maximum throughput of 1488
Mpackets/s for a gigabit Ethernet link inte account. The
next paragraph shows thut a single ASIP can handle
throughput of a gigabit Ethernet link for ome of the
envisaged algorithms. Multiple cores running in parallel can
easily support higher line rates.

6.2. Cycle Consumption

6.2.4. Parser

Various types of packels have been processed by the
parsing algorithm, up to layer 4 it applicable. 1t is worth
noting that the [Pv6 performance 15 on par with 1Pv4 thanks
to the high degree of parallelism in the processor,

Table 1. Parser performance in cycles

Packet Type Cycle
Consumption
[Pv4 + UDP/ITCP 37
[Pv6 + LIDP/TCP 57
VLAN + 1Pv4 + TCP 59
1ICMP echo request 56
ARP 28

6.2.2. Clussifier

The classification algorbm transforms the information
stored in the ticket into a search key, applies it 1o the
TCAM and reads back the result. The total operation,
tncluding TCAM latency, takes 40 clock cycles.

6.2.3. Packet Manipulator

Table 2 shows the performance figures fur three typical
packet manipulation scenartos, modifying the packets up to
layer 4. Please note that these figures should not be added
to get results for combined scenarios as each scenario
shares initialisation code, execuled once for each packet.

652

Tahle 2. Packet Manipulator performance in cycles
Scenario Tasks Cycle
Consumption
1 [nsert VLAN lag 32
2 Replace MAC Addresses 29

Decrement 1P 1TL
Update P Checksum

3 Replace MAC Addresses 41
Decrement iP TTL
Change IP Source Address
Change TCP Source Port
Update 1P & TCP Checksum

7. CONCLUSION

A processor architecture for a packet processing ASIP,
tailored to the needs of a flow aware access node, was
presented. A single ASIP is capable of handling parsing,
classification or packet manipulation functionality for |
Ghit/s Fthernet links. Furthermore, the ASIP can work
scamlessty in a mulli core environment, allowing excellent
sculabitity to build a 10 Gbit/s flow aware access nede.

8. ACKNOWLEDGEMENTS

Part of this work has been supported by the *Institute for the
Promotion of lnnovation by Science and Technology in
Flanders’ (W T} through the IWT project SERENA.

9. REFERENCES

(1) K. Moerman, J. Fishburn, M. Lasserre, T, Ginsburg, “Utah’s
UTOPIA: An Ethernet-Based MPLS/VPLS Triple Play
Deployment,” [EEE communications Magazine, pp. 142
150, Nov 2005,

(2] Dr. Lawrence G, Roeberts, “The next generation of TP - Flow
Routing,” in Prec. SSGRR 2003 [mernationad Conference,
L’aquila, Ttaly, July 2003,

{31 5. Oueslati, J. Roberts, “A new dircetion for quality of
service Flow Aware Networking,” in Proc Next
Generation Internet Nerworks 2003, April 2005, pp. 226
232.

(41 Y. Jiang, P. J. Emstad, A. Nevin, V. Nicola, M. Fidler.
*Measurernent-Based Admission Control for a flow aware
network,” in Proc. Next Genervation Internet Networks 2005,
April 2005, pp. 226 - 232.

i5) Target Compiler Technologies, httep:/www retarget.com

[617 W. Stallings, "Computer Organisation and Architecture
Desiging for performance,” 6™ Ldition, pp. 484, 2003

[7] T. Mallory, A. Kultberg, “Tncremental Updating of the
Internct Checksum,” RFCI 141, January 1994,

2006 International Conference on
Field Programmable Logic and Applications

Andreas Koch
Philip Leong
Eduardo Boemo

Editors

Technical Co-Sporsor
IEEE Circuit and Systems Society

-

- et
oy ;
- . : .
.) T Y ’ i .
& -y { » N T
. - - .
- Rl
d W L oy ow FOR
4 ' __.’i,-'.‘“___.;_* [) i i

IEEE Catalog Number: 06EX1349
ISBN: 1-4244-0312-X
Library of Congress: 2006922286

