
Enhancing Parallelism by RemovingCyclic Data DependenciesFubo Zhang and Erik H. D'HollanderUniversity of Ghent, Department of Electrical EngineeringB-9000 Ghent, BelgiumAbstract. The parallel execution of loop iterations often is inhibited byrecurrence relations on scalar variables. Examples are the use of inductionvariables and recursive functions. Due to the cyclic dependence betweenthe iterations, these loops have to be executed sequentially. A methodis presented to convert a family of coupled linear recurrence relationsinto explicit functions of a loop index. When the cyclic dependency isthe only factor preventing a parallel execution, the conversion e�ectivelyremoves the dependency and allows the loop to be executed in parallel.The technique is based on constructing and solving a set of coupledlinear di�erence equations at compile-time. The method is general for anarbitrary number of coupled scalar variables and can be implemented bya straight-forward algorithm. Results show that the parallelism of severalsequential EISPACK do-loops is signi�cantly enhanced by the convertingthem into do-all loops.Keywords: formal program development methodologies, language constructs, im-plementation issues, induction variable removal, linear recurrence relations.1 IntroductionA DO loop is excitable in parallel when there are no loop carried data depen-dencies. There exist many techniques to handle data dependencies of arrays andto parallelize DO loops[2, 4, 6, 8, 11, 12, 14]. In the case of scalar variables, datadependencies can be removed by renaming scalar variables or expanding scalarvariables into array references[5]. However the cyclic data dependencies arisingfrom induction variables or recurrences generally cannot be removed by renam-ing scalar variables or scalar variables extensions. A basic induction variable is avariable whose value is systematically incremented or decremented by a constantvalue in a loop and a variable de�ned by combination of basic induction variablesor other induction variables is an induction variable[1, 7, 13]. For example, if aloop contains a basic induction variable such as i = i + 1, the loop cannot beparallelized due to the cyclic data dependence. Scalar variable extension meansremoving the scalar i by converting it into an array I [k] of loop index k.Traditional compiler optimizations are able to eliminate simple inductionvariables by expressing them as a linear function of the loop index[1, 7]. Thoseinduction variables are de�ned as basic linear induction variables. For instance,
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i = i+1 is expressed as i = i0+ k. Where i0 is the initial value of i and k is theloop index.M.Wolfe[13] improved the analysis of induction variables to include casessuch as{ wrap-around variables,{ ip-op variables,{ families of periodic variables,{ non-linear induction variables (polynomial and geometric), and{ monotonically increasing and decreasing variables.Wolfe eliminates some non-linear induction variables by expressing them as poly-nomial and geometric functions of the loop index. For example, when the basesof a geometric induction variable are g1; g2; : : : ; gn, the induction variable canbe represented as the function:mXi=0 sihi + nXj=1 sj+mghjThere are m + n + 1 unknowns sk which are found by matrix inversion whenthe sequence of initial m+n+1 states of the induction variable is known. Hereh is the loop counter starting from zero and m is the order of the polynomial.Normally, a geometric induction variable I is produced by an assignment of theform I = b � I + c. Here the geometric base, b, is immediately apparent fromthe statement. The following program, however, gives an example where thegeometric bases are not immediately visible.Example 1.u=v=0do i =1, Nu= 2*u+v+2v= 2*u-3*v-3a(u,v) = a(u,v)+c(v, u)enddoThe reason is that the two induction variables, u and v form two coupled di�er-ence equations. In this case the geometric bases of u and v are determinated bythe homogeneous solutions of the di�erence equations [10].In this paper a general method is proposed to solve the problem of n si-multaneous induction variables which form n a set of coupled linear di�erenceequations. An algorithm is proposed to �nd the geometric bases of the induc-tion variables and to express them as a polynomial and geometric functions ofthe loop index. In this way the cyclic dependency is removed and the loop isreshaped as a do-all loop. The conversion technique is based on solving a set ofcoupled di�erence equations and is described in section 2.The method is general for an arbitrary number of coupled scalar variables andcan be implemented by a straight-forward algorithm. This is shown in section 3,where also the implementation steps are explained using a speci�c example.



In section 4 it is shown that the removal of the cyclic dependencies in a setof EISPACK benchmark routines is able to increase the number of do-all loops.2 Removal of cyclic induction variablesA cyclic data dependence is generated when a scalar variable uses the value ofa scalar variable in the previous iteration. We address this scalar variable as ainduction variable. There are several methods to �nd these induction variables[3, 13]. A conditional induction variable is an induction variable which appearsin branch statements i.e. if-statement, and conditionally incremented or decre-mented. This induction variable cannot generally be expressed as a function ofthe loop index. Hence, we exclude this case from our discussion.Assume, a loop contains a set of n coupled induction variables as in thefollowing example. do K = 1; ND1 = h1(U1)T = AT +BD2 = h2(U2)enddo (1)Here An�n and Bn represent constant arrays and T = [t1; � � � ; tn]T is theset of recursively de�ned induction variables. Furthermore D1; D2; U1 and U2denote the set of de�ned and the set of used variables in the loop. If Dk and Uk(1 � k � 2) do not overlap, the parallel execution is only prevented by the cyclicdependence in the ud-chain of T .Consider the induction variables T in the loop (1). Let Tk (k � 0) be thestate of T after iteration k and let T0 be the initial state. Clearly, the inductionvariables only depend on the state of the previous iteration by the set of coupleddi�erence equations: Tk+1 = ATk +B (2)When substituting Tk by Tk�1 and Tk�1 by Tk�2, : : : , T1 by T0, one obtainsTk+1 = Ak+1T0 + kXi=0 AiB (3)Equation (2) represent n-�rst order di�erence equations with the constantcoe�cients. In general, simultaneous di�erence equations are solved by manuallyeliminating n� 1 variables, solving the resulting n�th order di�erence equationand using back substitution [10].However, for the automatic conversion at compile time, a direct method isneeded. Therefore de�ne the di�erence operator�yk = yk+1�yk and the shiftingoperator E = 1 +� or Eyk = yk+1. The following property of operators � andE is useful [10].



Lemma1. Let Pk = ankn+an�1kn�1+ : : :+a0 be a polynomial function. Then�nPk = a0n! and �n+mPk = 0; m � 1.By using shifting operator E, the equation (2) is modi�ed into ETk = ATk+B. Hence (EI �A)Tk = BHere I is the identity matrix. The solutions of t(i)k aret(i)k = jHijjEI �Ajwhere Hi is derived from the matrix (EI � A) by replacing column i with thearray B. When the shifting operator E is applied to a constant, the result isthe constant itself. Therefore any shifting function f(E) applied to a constant csatis�es the following identity f(E)c = f(1)c. Because B and Hi are constants,the operator E may be replaced by unity in Hi. Therefore jHij is a constant too.Denote hi = jHij. One has the following di�erence equation:jEI �Ajt(i)k = hi; (1 � i � n)The homogeneous solutions are the roots of the function jEI � Aj = 0, i.ethe eigenvalues of the matrix A. Let �i; (1 � i � n) be the n eigenvalues ofthe matrix A. Hence each t(i) is independently represented as one n�th orderdi�erence equation, nQj=1(E � �j)t(i)k = hi; (1 � i � n) (4)Therefore, the complete solution of (4) is given as follows.ti = ci1�k1 + ci2�k2 + : : :+ cin�kn + pi(k) (5)Where the cij ; 1 � i; j � n are n sets of arbitrary constants; pi(k) is a particularsolution of equation (4).Homogeneous solutions of (4) depend on the roots �1; : : : ; �n. The followingcases are possible.1. The roots are all real and distinct. One has the homogeneous solutiont(i)k = ci1�k1 + ci2�k2 + : : :+ cin�kn2. Some of the roots are complex numbers. Suppose � + �i and � � �i are acouple of roots. Then the homogeneous solution is�k(c1 cos k� + c2 sin k�)3. Some of the roots are equal. Suppose �1 = �2 = : : : ;= �m. Then the homo-geneous solution is (c1 + c2k + : : :+ cmkm�1)�k1In addition, since the right side of (4) is a constant, a particular solution canbe easily found.



2.1 Finding a particular solutionBecause the right side of (4) is a constant, a particular solution is a polynomialof the form pi(k) = nPj=0 ajkj .Let Sm = nYj=m(1� �j);m = 1; : : : ; nThree cases are considered, depending on the number of unity roots. If equa-tion (4) has no unity roots, then a particular solution is hi=S1. If all roots areequal to 1, then by lemma (1) a particular solution is hikn=n!. If the number ofunity roots is between 1 and n, the following theorem applies.Theorem2. If �1 = �2 = : : : ;= �m = 1 and �j 6= 1;m < j � n, thenp(k) = hikm=(Sm+1m!) is a particular solution of (4).Proof.By replacing t(i)k with p(k) in the equation (4), the left side of equation becomesnYj=m+1(E � �j)(E � 1)mkmhi=(m!Sm+1)By lemma (1), (E � 1)mkm = �mkm = m! . Therefore,nYj=m+1(E � �j)(E � 1)mkmhi=(m!Sm+1) = nYj=m+1(1� �j)m!hi=(m!Sm+1) = hiThis proves that p0(k) is a particular solution of (4).22.2 Finding the complete solutionThe equation (5) expresses the general solution. In order to completely estab-lish the solution, the constants cij ; 1 � j � n should be determined for theinitial state t(i)0 . Because there are n constants, the states of t(i)1 ; t(i)2 ; : : : ; t(i)n arerequired. These can be calculated by the equation (2) from the initial state T0.The ith set of constants Ci = (ci1; : : : ; cin)T are determined from the follow-ing equations. LCi = P (6)Where L = 0BB@�1 : : : �n�21 : : : �2n: : :�n1 : : : �nn1CCA and P = 0BBB@ t(i)1 � pi(1)t(i)2 � pi(2): : :t(i)n � pi(n)1CCCA



Since �j ; t(i)j and pi(j) are constants, this linear system has the solution(c0i1; c0i2; : : : ; c0in).Now the complete solution ist(i)k = c0i1�k1 + c0i2�k2 + : : :+ c0in�kn + pi(k) (7)Where pi(k) is a polynomial by theorem 2.3 Algorithm and ApplicationThe method to eliminate induction variables is applicable in a program trans-former by applying the following algorithm.Algorithm 1 (Elimination of induction variables)Let Tk+1 = ATk +B n be coupled di�erence equations.input| A;B and n. A and B are constant arrays.output| the complete solutions t(i)k = ci1�k1 + ci2�k2 + : : :+ cin�kn + pi(k).Let �1; : : : ; �n be the eigenvalues of A. ThennQj=1(E � �j)t(i)k = c0i; (1 � i � n)For i = 1 to n do1) By theorem 2, a particular solution of t(i)k is found.2) The homogeneous solution is found as follows:Let L be a matrix with kth row equal to (�k1 ; : : : ; �kn) 1 � k � n.a) If �j and �j+1 are complex numbers, then�kj and �kj+1 of L are replaced with �k cos k� and �k sin k�.b) If �j = �j+1 = : : : = �j+m�1, then �kj ; : : : ; �kj+m�1 in L are replaced with�kj ; k�kj : : : ; km�1�kj .3) Let the vector P = [t(i)1 � pi(1); : : : ; t(i)n � pi(n)]T .4) Solve the set of linear equations LCi = P for Ci.EndforTo illustrate the di�erent steps of the algorithm, let's recap the example (1).The induction variables T = [u v]T satisfy the di�erence equations expressed inthe program. Using shifting operator E, the set of equations becomes:(E � 2)uk � vk = 2�4uk + (E + 1)vk = 1Therefore jEI �Aj = ����E � 2 �1�4 E + 1 ���� = (E + 2)(E � 3)yielding the eigenvalues -2 and 3.With jH1j = ����2 �11 E + 1 ���� = 5 and jH2j = ����E � 2 2�4 1 ���� = 5



the decoupled 2-nd order di�erence equations become(E + 2)(E � 3)uk = 5(E + 2)(E � 3)vk = 7By theorem 2, particular solutions p1(k) = 5=((1 + 2)(1 � 3)) = �5=6 andp2(k) = 7=((1 + 2)(1� 3)) = �7=6 are found.Then the general solutions are:uk = c1(�2)k + c23k � 5=6vk = c01(�2)k + c023k � 7=6In order to determine the coe�cients c, note that u1 = 2; u2 = 7 and v1 =1; v2 = 8. We have�2c1 + 3c2 = 2 + 5=64c1 + 9c2 = 7 + 5=6 and �2c01 + 3c02 = 1 + 7=64c01 + 9c02 = 8 + 7=6yielding c1 = �1=15; c2 = 9=10 and c01 = 4=15; c02 = 9=10.As a result of eliminating the induction variables, the cyclic data dependen-cies are removed. Therefore, the loop is now parallelized as a doall-loop.u=v=0doall i =1, Nu1 = (-2)**iv1 = 3**iu= -u1/15+9*v1/10 -5/6v= 4*u1/15 +9*v1/10-7/6a(u,v) = a(u,v)+c(v, u)enddoNext, we discuss the algorithm for some types of induction variables.Basic Linear Induction Variables are a simple case of non-linear inductionvariables where the geometric bases are either unity or zero and the number ofunity bases is equal or less than 2.A Non-Linear Induction Variable as de�ned in [13] can be presented as apolynomial and a geometric function by the algorithm (1). Especially, when thegeometric bases are either 1 or 0, the function is a polynomial function. Thereforewe have the following theorem.Theorem3. The solution of the induction variables in the equation 7 is poly-nomial if and only if the eigenvalues of the matrix A are either unity or zero.Proof:When the solution of induction variables is polynomial, the homogeneous partof equation 7 is a constant. Therefore �i (1 � i � n) of equation 7 are either 1or 0. Consequently, the eigenvalues of the matrix A are either unity or zero.



Inversely, when the eigenvalues of the matrix A are either 1 or 0, the ho-mogeneous part of equation 7 is a constant. By the theorem 2, the particularsolution pi(k) of equation 7 is polynomial. Hence the solution of the inductionequations is polynomial.2A Wrap-Around Variable is a variable t which value is also used in U1 in theequation (1). The algorithm can express it as a function f(k) of the loop indexk. In all but the �rst iteration, in U1 t's value is equal to f(k � 1); in the �rstiteration t's value is equal to its initial value t0. Hence a loop-header �-functionis added in the front of U1, t0 = �(t0; f(k� 1)) which is equal to t0 when k = 1,otherwise is f(k � 1). Therefore the appearances of t in U1 are replaced by t0.Hence, the following example from [13]im1=ndo k=1, nA(k)=A(im1)+ ...im1=kenddois converted intoim1=ndo k=1, nim1'= �(n; k � 1)A(k)=A(im1')+ ...im1=kenddoIn this way, the cyclic data dependence of im1 is eliminated.Flip-Flop and Periodic Variables are often used to switch the values of twovariables [13]:j=1jold=2do k=1, n... relaxation code ...jtemp = joldjold=jj=jtempenddoThe di�erence equation of j and jold isjoldk = jk�1j = joldk�1



Which is rewritten by using operator E as below.Ejold� j = 0�jold+Ej = 0The homogeneous solutions are �1 and 1 respectively, and particular solution is0. We have joldk = c11(�1)k + c21jk = c21(�1)k + c22These coe�cients are found by solving the linear equations with the initial valuesfjold1 = 1; j1 = 2; jold2 = 2; j2 = 1g.joldk = 12 (�1)k + 32jk = 12 (�1)k+1 + 32Therefore the cyclic data dependencies are removed, and we obtain the followingprogramj=1jold=2do k=1, n... relaxation code ...jtemp = (1/2)*(-1)**(k+1)+3/2jold=(1/2)*(-1)**k+3/2j=(1/2)*(-1)**(k+1)+3/2enddo4 ResultsIn the previous sections a technique has been developed to remove the linearcyclic dependencies. This type of dependencies arises regularly in common pro-grams. Consider the following loop taken from the EISPACK routine bqr.f(program 2.a).Here a cyclic data dependence is created by variable kj. So the do-loop cannotbe executed in parallel. After removing the cyclic dependence (program 2.b), theparallelism of loop is enhanced.Example 2.kj =m4 + m2 * m1 + 1 | kj01 =m4 + m2 * m1 + 1 ! initial kjdo 200 k = 2, m1 | doall 200 k = 2, m1 ! doallkj = kj + 1 | kj = kj01 + k - 1km = k + m2 | km = k + m2rv(kj) = rv(km) | rv(kj) = rv(km)200 continue | 200 continue|(a) before removing | (b) after removing



cyclic dependence | cyclic dependenceIn order to show the importance of cycle dependence removal, the last columnof table (1) gives the extra do-all loops detected by the methods presented inthis paper.From the table can be seen that from the original 31 parallel loops 15 extraloops have been parallelized, an increase of 42%.Code do-loops doalls doalls doallsbefore after increasebandv 22 4 8 4bqr 21 6 8 2ratqr 11 3 4 1cinvit 18 6 7 1trbak 4 1 3 2tred3 10 4 8 4tsturm 22 7 8 1total 108 31 46 15Table 1. The improvement of parallelism in a set of EISPACK routines after removingthe cyclic data dependencies
5 ConclusionsA method to eliminate a class of cyclic dependencies arising from linear recur-rence relations has been developed. As a result cyclic data dependencies causedby induction variables are removed. If there are no other loop carried dependen-cies, the loop can be transformed into a doall-loop.The presented technique can be implemented e�ectively in parallelizing com-pilers and has been used successfully to eliminate common recurrence constructsin a number of EISPACK routines.References1. Alfred V. Aho and Je�rey D. Vllman. Compilers: Principles, Techniques, and tools.Addison-Wesley, Reading, MA, 1986.2. Allen, J.R., and Kennedy, K. Automatic Translation of FORTRAN Programs toVector Form. ACM Transaction on programming Language & Systems. Vol. 9,No.4(October), pp.491-542, 1984.
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