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Abstract— The magnetic behavior of iron based ferromagnetic
materials is important for the improvement of performances of
electromagnetic devices. This paper deals with an accelerated
3D model that computes the magnetic behavior of an iron
grain under a varying applied field starting from its microscopic
material parameters. The dynamics of the magnetic dipoles M
in each space point of the grain are computed by integrating
the Landau-Lifshitz equation using a semi-analytical predictor-
corrector time stepping scheme. In the numerical computations,
the spatial discretization is obtained by finite different techniques.
Evaluation of the magnetostatic field is done using Fast Fourier
Transforms. This is the most time consuming part of the
computations and in this paper we will demonstrate that this can
be accelerated by computing the magnetostatic field on a higher
discretization level. The values of the magnetostatic field in each
finite difference cell are determined through interpolation, still
preserving a very good precision.

I. INTRODUCTION

Classically the iron losses in electrical steels are charac-
terized and qualified by means of standards which are based
on simple, unidirectional sinusoidal flux excitations using e.g.
Epstein, ring core or single sheet measurement equipment.
Generally, the measured iron losses in electromagnetic devices
exceed the value based on these standard measurements. This
is caused by nonuniform phenomena like distorted flux distri-
butions, local rotational excitations, changes in the magnetic
characteristics due to the mechanical treatment, etc. Under-
standing these phenomena inside the electrical steel is an in-
dispensable step in the process of developing electromagnetic
devices with lower core losses, resulting in a lower energy
consumption. Here, the relation between the electromagnetic
behavior and the microstructure of the electrical steel is
crucial as the microstructure is directly related to the material
production and treatment techniques. Hence, a good model for
the magnetic behavior of ferromagnetic materials starts from
microstructural features like the presence of lattice effects,
grains, stresses, crystal defects, etc.

II. MICROMAGNETIC THEORY

Here we focus on the magnetic behavior of a ferromagnetic
– pure iron – grain exposed to a time varying external magnetic
field. The relation between the magnetization of the grain
and the external applied field is expressed by the hysteresis
loop of the grain. The micromagnetic theory describes the
magnetic dynamics in the material, based on the microscopic
material parameters and the applied field. This theory has

been adopted to small storage devices but current available
computer resources make it possible to use the micromagnetic
theory also in models for larger 3D structures as an iron grain.
The micromagnetic theory of ferromagnetic materials is based
on the assumption, following Landau and Lifshitz [1], that the
magnetization of magnetic dipoles M varies with the position,
but that it has a fixed temperature dependent magnitude |M| =
Ms (below Curie-temperature). The evolution of M = Msm
is governed by the Landau-Lifshitz-equation (LL-equation)

∂m
∂t

=
γG

1 + α2
m×Heff +

αγG

1 + α2
m× (m×Heff ) (1)

with α and γG the damping constant and gyromagnetic con-
stant respectively. This equation is an extension of the static
micromagnetic equilibrium condition m(r) × Heff (r) = 0.
Here, and in the LL-equation (1), the influence of the micro-
scopic material parameters and the applied field is included
through the effective field which contains the applied field,
the exchange field, the anisotropy field, the magnetostatic field
and the magnetoelastic field.

III. 3D NUMERICAL SCHEME

In the 3D numerical scheme, the grain is discretized in
cubical finite difference (FD) cells. Each FD cell contains one
magnetic dipole M located in the center of the cell with fixed
amplitude Ms and varying orientation. The quasi-static applied
magnetic field Ha is approximated by a piecewise constant
time function. It is assumed that at the moment the applied
field Ha jumps from a constant value to the next one, the
material is in static micromagnetic equilibrium. Using the LL-
equation (1), the magnetization dynamics in each FD cell is
computed by time stepping until a new static micromagnetic
equilibrium is obtained corresponding to the new value for
the applied field. This time stepping is performed by a time
and memory efficient semi-analytical predictor corrector time
stepping scheme [2]. In this time stepping scheme, the optimal
discretization length of the FD cell is 9 nm leading to about
10 000 000 FD cells for a grain with dimensions of order µm.

In the time stepping scheme, the effective field Heff has
to be evaluated twice in each FD cell for every time step. The
most time consuming part in this computation comes from the
evaluation of the magnetostatic field Hms which follows from
∇·Hms = −∇·M and ∇×Hms = 0 using Greens functions:

Hms =
Ms

4π

∫

Ω

(
m

|r− r′|3 −
(m · (r− r′)) (r− r′)

|r− r′|5
)

dΩ′

(2)
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with Ω the volume of the considered grain. The magnetostatic
field (2) is computed using Fast Fourier transforms, exploiting
its convolution structure Hms = g(r) ? m(r) with g(r) a
symmetrical tensor containing all geometrical information.
The convolution product is then performed by (i) Fourier
transforming the data g(r) once in the set up phase of the
algorithm and Fourier transforming m(r) every time step,
(ii) multiplying the Fourier transformed data point by point
and (iii) inverse Fourier transforming the product. When a
grain is considered containing N FD cells, the computational
complexity of the Fourier transforms scale as O(N log N) and
the total algorithm scales as

∼ (N log10 N + 4.825 N). (3)

For µm-sized grains most of the CPU time is spent on the
calculation of the Fourier transforms needed for the magneto-
static field. This numerical scheme leads to an exact evaluation
of the magnetostatic field Hms in the center of every FD cell.

An approximate computation of the magnetostatic field
Hms can be performed when the magnetostatic field is com-
puted on a higher discretization level, combining n cells in
each discretization direction and replacing them by an average
magnetization m̃. The computation of the magnetostatic field
on this discretization level H̃ms scales as O(N/n3 log N/n3).
The magnetostatic field Hms in each FD cell is then computed
by interpolation of the values H̃ms. In this case the total
algorithm scales as

∼ (
N

n3
log10

N

n3
+ 1.98

N

n3
+ 3.76 N) (4)

where the term proportional to N/n3 contains contributions
from the point by point products mentioned above and from
the Fourier transforms themselves.

IV. NUMERICAL RESULTS

The validity of the approximate computation of the magne-
tostatic field Hms hysteresis loops is evaluated for a cuboid
grain of size 1.08 µm×4.32 µm×1.08 µm. The external mag-
netic field is applied along the longest edge of the grain and
the magnetostatic field is computed on different discretization
levels (n = 1, 2, ..., 5). The applied field Ha is described
with #Ha = 400 constant values, leading to an average of
10 000 time steps to compute the hysteresis loop. Table I shows
the CPU time needed for one time step and the precision
achieved for different n. The precision is defined relative to
the hysteresis loop computed without interpolation (n = 1):

precision =
1

#Ha

#Ha∑

i=1

| < mn 6=1 >i − < mn=1 >i | (5)

with < mn >i the average magnetization of the grain when
#Ha = i. The CPU time decreases drastically for n = 2 and
n = 3, for higher n the term proportional to N dominates
in (4). All loops for n < 5 have a similar good precision of
2%. The hysteresis loops for n = 1 and n = 3 are shown
in Fig. 1(a), while Fig. 1(b) shows the difference between the
two descending branches of the loops. The peaks in the curve
correspond to jumps in the hysteresis loops taken at slightly
different values of the applied field.

V. CONCLUSION

One concludes that the evaluation of the magnetostatic field
Hms on a discretization level corresponding to n = 3 reduces
the CPU time with about 70% still keeping a very good
precision with respect to the exact computations.

TABLE I
PRECISION AND CPU TIME (ONE TIME STEP) FOR DIFFERENT LOOPS

n CPU time [s] precision [%]
1 36.96 —
2 13.54 2.01
3 10.98 1.91
4 10.76 1.96
5 10.05 2.54
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Fig. 1. Hysteresis loops for a cuboid iron grain of size 1.08 µm×4.32 µm×
1.08 µm
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