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Abstract — This paper treats the non-destructive
localisation of reinforcement bars. It introduces a
quantitative algorithm using a Gauss-Newton-type
optimization to determine the radius and position
of one reinforcement bar in a homogeneous medium
from data collected with a bi-static linear measure-
ment setup. The use of the Linear Sampling method
as a preprocessing step and a fast analytical 2D
model for the direct problem results in a robust
and quasi-realtime microwave imaging system. Re-
constructions from both simulated and experimental
data are presented.

1 Introduction

For repair and renovation of concrete structures, in-
formation on the location and geometry of the re-
inforcement bars is a necessity. The position of the
rebars is important since most processes of corro-
sion are directly related to an insufficient concrete
cover or incorrect placement of the reinforcement.
The diameter of the bars determines the bearing ca-
pacity of concrete elements. There exists a strong
interest in non-destructive techniques to determine
these important parameters. Recently a near-field
Synthetic Aperture Radar (SAR) technique was de-
veloped in our department [1]. This technique,
however, produces only qualitative images, that al-
low for the detection and localisation of the rebars,
but with a limited accuracy in terms of position,
and with almost no information about the diame-
ter of the bars. Moreover, image artefacts are of-
ten present. Its main advantage is its speed, which
makes it suited for real-time applications. In this
paper we present a quantitative microwave inver-
sion method for the detection of metal bars in free
space. This is the first step towards a completely
quantitative imaging algorithm for rebars in con-
crete. The data are collected with a bi-static linear
measurement setup which measures the scattered
field in reflection only. For the inversion, a Gauss-
Newton minimization algorithm [2] is applied to a
least squares datafit cost function. The evaluation
of this cost function and its derivatives is very effi-
cient due to the use of an analytical forward model
that explicitely uses the facts that the bars have a
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circular cross-section and can be modeled as per-
fectly electrically conducting (PEC) at microwave
frequencies. To avoid the pitfall of multiple local
minima of the cost function, the Linear Sampling
Method (LSM) [3, 4] is used as a preprocessing step
that finds a good initial estimate for the optimiza-
tion algorithm. The resulting method is robust and
provides quasi-realtime reconstructions of the rein-
forcement bars. It is validated on both simulated
and measured scattering data.

2 Theory and algorithm

2.1 Direct problem

We consider a Perfectly Electrically Conducting
(PEC) cylinder with circulair cross section placed
in a homogeneous background medium. The ge-
ometry of sources and scatterer is assumed to be
z-invariant, so a 2D approximation can be used.
This assumption is inspired by the vertical position
of the reinforcement bar and the use of only TM-
excitations in the measurements. Scattering by this
simple configuration can be treated analytically [5]
allowing for a fast simulation of the scattered field
and its derivatives.

The major difficulty is presented by the linear
measurement setup, which requires the incorpora-
tion of the antenna pattern in the calculations, be-
cause the scatterer is not always in the main lobe
of the antenna. Without incorporation of the an-
tenna pattern in the direct problem, the simulated
scattered field will never match the measured data.
After experimental determination of amplitude and
phase of the pattern it can be incorporated in the
analytical calculations.

2.2 Inverse problem

It is known that the inverse scattering problem is
ill-posed, i.e. the existence, uniqueness and stabil-
ity of the solution are not simultaneously guaran-
teed. To address the nonexistence, caused by noise
and modeling errors, the solution is redefined as the
minimizer of a cost function. A least squares cost
function is used:

Q(x0, y0, a) = ‖E(x0, y0, a)−Em)‖2 (1)
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where E(x0, y0, a) is a vector that contains the sim-
ulated field scattered from a bar (position (x0, y0)
of the center, radius a) and Em contains the mea-
sured field data. This cost function proved to have
multiple local minima which makes it difficult for a
local optimization method to converge succesfully.

2.2.1 Linear Sampling

A good initial guess can avoid the problem of mul-
tiple minima. To this end the Linear Sampling
Method (LSM) is applied to the measured data
[3, 4]. The LSM solves a linear ill-posed problem to
determine the support of the scatterer. To handle
the ill-posedness of the linear problem a Tichonov
regularization is employed. The image acquired by
the method is then used to estimate the position
and radius of the rebar.

2.2.2 Gauss-Newton method

Subsequently the Gauss-Newton method is used to
find the minimizer of the costfunction (1). This lo-
cal method will converge to the correct global min-
imum if it is started from the initial LSM estimate.
The Gauss-Newton algorithm adjusts the vector of
reconstruction variables u = [x0, y0, a] in each iter-
ation with the update ∆u = [∆x0,∆y0,∆a] calcu-
lated as:

∆u = −<[JHJ]−1<[JH∆E] (2)

with J the Jacobian matrix of the scattered fields E
and ∆E the vector with ∆E = E−Em. In practice
we have found it advisable to perform the optimiza-
tion in two steps: first the radius is kept fixed at the
LSM value, while the x0- and y0-values are updated
and in a second step all parameters are updated si-
multaneously. This seems to prevent problems with
negative values for the radius of the bar and avoids
the use of a constrained optimization.

3 Experimental setup

To perform the measurements a linear, fully auto-
mated positioning system is used. Attached on two
separate rails the transmitting and receiving anten-
nas move along the x-axis. The antennas are posi-
tioned at different heights to prevent collision dur-
ing movement. In this setup exponentially tapered
horn antennas are used in the frequency range of
9-11Ghz. After calibration of the antenna-cables
and alignment of the antennas, a rebar is placed
in front of the antennas. Two data sets are col-
lected, one without rebar (free space measurement)
and one with the bar in place (total field measure-
ment). For every measurement, the transmitter is

Figure 1: Overview of simulation parameters

successively placed in N equidistant positions and
for each transmitter position, the scattered field is
measured in the same N points by the receiver (see
Figure 1).

4 Calibration

In theory the scattered field is obtained by sub-
tracting the free space data from the total field
data. Due to a variety of factors the measurements
are not completely reproducible and the crosstalk
between transmitter and receivers is not entirely
eliminated. A rigorous calibration method utiliz-
ing known theoretical properties of the scattered
field is applied on the data. This method removes
the crosstalk peaks without any a priori informa-
tion on the bar. The key problem still remaining
is normalizing the measurements to the level of the
simulated values. Due to a lack of reproducibility
a method using a reference measurement cannot be
used at this time.

5 Results

5.1 Simulated data

To test the performance of the proposed method,
we first conducted a parameter study for follow-
ing parameters: the position of the bar (x0, y0) on
a test grid, the distance D between the antenna
array and the center of this grid, the radius a of
the bar and the number of antenna-positions N
(see Figure 1). The antennas were always spaced
2 cm apart. The simulations were performed for
omnidirectional antennas (line sources) and where
corrupted with Gaussian noise, corresponding to a



Signal to Noise Ration (SNR) of 50 dB. The re-
construction error is defined as ‖u − u0‖, where u
and u0 are the reconstructed and actual parameter
vectors respectively. It was found that the method
does not converge optimally in certain situations.
One factor is the influence of the minimal angle
θmin under which the bar is seen from the anten-
nas (Figure 1). This angle should be smaller then
approximately 60 degrees to keep enough depth res-
olution in the measurements. This can be achieved
by increasing N or decreasing D. It was further
shown that the Linear Sampling grid has to include
the rebar completely. Placing the bar at the edges
of the grid results in faulty intial estimates and can
lead to convergence in a wrong local minimum. The
mean error over all test cases that comply with the
restrictions above was only 0.07 mm. The mean ex-
ecution time was 13 s (on a 2.4Ghz processor) and
the mean number of iterations was 7.

To investigate the influence of measurement
noise, the following two test cases were selected :
N = 51, D = 0.8 m, a = 6 mm, position 1 =
(0, 0) and position 2 = (0.15, 0.05). The SNR val-
ues were varied from 15 to 50 dB. Figure 2 shows
the reconstruction error as a function of the SNR.
In the worst case scenario (test case 1, SNR = 15
dB) we found an error = 0.5 mm, 7 iterations and
an execution time of 16 s. It can be concluded that
high noise levels do not significantly affect the min-
imizer of the cost function (although the minimal
value is altered) and that the LSM can handle high
noise levels.

To investigate the influence of the antenna pat-
tern on the performance of the algorithm, the same
two test cases were selected and again the recon-
struction error was calculated for different SNR val-
ues (Figure 3). By adding the pattern, execution
time rises drastically due to a more complex ana-
lytical calculation. The pattern narrows the mea-
surement angle and by doing so lowers the depth
resolution. The maximum error (test case 2, SNR
= 15 dB) is 5.8 mm with 41 iterations and execution
time of 206 s, but generally, for SNR values larger
than 20 dB, it can be concluded that the algorithm
yields mm-precision and has execution times in the
order of minutes.

5.2 Experimental data

The algorithm was also applied to real measure-
ments taken with our setup. After calibration we
were able to succesfully find a solution. The rebar
with radius a = 6 mm was placed in the vincin-
ity of the origin (0, 0) of the grid at D = 1 m and
with N = 51. The algorithm found a position of
(−0.0007, 0.0097) and a radius of 6.9 mm. The es-

Figure 2: Reconstruction error vs. SNR without
radiation pattern.

Figure 3: Reconstruction error vs. SNR with radi-
ation pattern.

timated SNR of the measured data was 15 dB. Since
the bar was positioned manually without great pre-
cision, especially in the y-direction, this result can
be called satisfactory.

6 Conclusions

To solve the 2D inverse scattering problem of find-
ing a reinforcement bar in a homogeneous space,
an algorithm, consisting of a Linear Sampling pre-
processing step and an iterative Gauss-Newton op-
timization, was developed. A parameter study
showed that mm-precision can be attained for a
wide range of configurations with execution times
in the order of minutes. It has also been shown
that the method can be applied to experimental
data with good outcome.
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