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For mechanical systems or classical field theories with nonholonomic con-
straints, the presence of symmetries does not immediately imply the existence

of associated conservation laws, i.e. Noether’s theorem is no longer valid and

is replaced instead by an equation describing the evolution of the conserved
quantity under the flow of the nonholonomic system. In this paper, we use

the De Donder-Weyl formalism for nonholonomic field theories to derive this

nonholonomic momentum equation.
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1. Introduction

Symmetries play a fundamental role in classical mechanics and field theory.
This is epitomized in Noether’s first theorem: every continuous symmetry
gives rise to a conserved quantity. In the case where nonholonomic con-
straints are present, however, Noether’s theorem is no longer valid, but the
analysis of symmetries is still a very powerful tool, an observation which
goes back at least to the work of Vierkandt.1

For nonholonomic mechanical systems with symmetry, instead of Noether’s
theorem, there exists an equation describing the evolution of the associated
“conserved” quantities under the nonholonomic flow. This equation is know
as the nonholonomic momentum equation and was derived by Bloch et al.2
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for mechanical systems (see also the work of Cantrijn et al.3).

In this paper, we derive a nonholonomic momentum equation for classical
field theories with nonholonomic constraints (theorem 4.1). The main tool
in our derivation is the nonholonomic De Donder-Weyl equation, which we
recall in section 2. In section 3 we introduce nonholonomic symmetries as
sections of a certain bundle of Lie algebras. Section 4 is devoted to the proof
of the nonholonomic momentum equation.

This paper is meant as a companion paper to Ref. 4, where proofs of some
of the technical lemmata can be found, as well as a number of applications.

2. Lagrangian first-order field theories

2.1. First-order jet bundles

Throughout this paper, we will represent fields as sections of a given fibre
bundle π : Y → X, whose base space is an (n + 1)-dimensional oriented
manifold with volume form η. A typical coordinate system on X is denoted
as (xµ), µ = 0, . . . , n, and is assumed to be adapted to the volume form in
the sense that η can locally be written as

η = dn+1x := dx0 ∧ · · · ∧ dxn.

In addition, a typical coordinate system on Y will be assumed to be adapted
to the projection π, meaning that, if (xµ; ya) are coordinates on Y (a =
1, . . . ,m), then π is locally given by π(xµ, ya) = (xµ).

The first jet bundle J1π is the manifold of equivalence classes of local sec-
tions of π, where two sections are said to be equivalent if their first-order
Taylor expansions agree at a point. Elements of J1π are denoted as j1xφ;
there exists a projection π1,0 : J1π → Y defined by π1,0(j1xφ) = φ(x).
Furthermore, we define the projection π1 : J1π → X as the composition
π ◦ π1,0.

Recall that a connection on π1 is a vector-valued one-form h on J1π such
that h σ = σ for every semi-basic one-form σ. Here, h σ is the contraction
of h with σ; see section A.1 for its definition. In coordinates, a connection
can be represented as follows:

h = dxµ ⊗
(

∂

∂xµ
+ Γaµ

∂

∂ya
+ Γaµν

∂

∂yaν

)
, (1)

For more information about jet bundles and connections, see Ref. 5.
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The Cartan form

For the purpose of this paper, a Lagrangian is a function L on J1π. Without
going into any details, we mention here the existence of a distinguished
(n + 1)-form on J1π, called the Cartan form, which is a central object in
the geometric formulation of the field equations. If L is a Lagrangian, then
the associated Cartan form has the following coordinate expression:

ΘL =
∂L

∂yaµ
(dya − yaνdxν) ∧ dnxµ + Ldn+1x.

We define the Poincaré-Cartan form ΩL as −dΘL.

2.2. Nonholonomic constraints

A nonholonomic field theory is determined by the specification of three
elements (see also Refs. 4,6–8):

(1) a (regular) first-order Lagrangian L : J1π → R;
(2) a constraint submanifold C ↪→ J1π, such that the restriction of the

projection (π1,0)|C defines a subbundle of J1π;
(3) a bundle of reaction forces F , where the elements Φ of F are (n + 1)-

forms defined along C which satisfy the following requirements:

(a) Φ is n-horizontal, i.e. Φ vanishes when contracted with any two π1-
vertical vector fields;

(b) Φ is 1-contact, i.e. (j1φ)∗Φ = 0 for any section φ of π.

For the sake of simplicity, we assume that C is defined by the vanishing
of k functionally independent functions ϕα on J1π, and that F is globally
generated by l generators Φκ of the following form:

Φκ = Aκµa (dya − yaνdxν) ∧ dnxµ (κ = 1, . . . , l).

In practice, the dimension l of F will be equal to the codimension k of C.
There seems to be no a priori reason for supposing that k = l. In most cases,
however, F will be determined by C through application of the Chetaev
principle (see Refs. 4,6) but this is not necessary for the present treatment.



December 11, 2007 20:35 WSPC - Proceedings Trim Size: 9in x 6in dgasymm

4

2.3. The nonholonomic De Donder-Weyl equation

The dynamics of a nonholonomic field theory is specified by the nonholo-
nomic Euler-Lagrange equations, which are given below in coordinate form:[

∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λακA

ακ
a (j1φ) and ϕα(j1φ) = 0. (2)

Here, λακ are unknown Lagrange multipliers, to be determined from the
constraints. Note that the terms on the right-hand side represent the reac-
tion forces. A derivation of these equations can be found in Ref. 9.

The dynamics of a field theory can also be approached through the so-
called De Donder-Weyl equations, a set of algebraic equations specifying a
connection h on π1 with the following property: if ψ is an integral section of
h, then ψ is holonomic, i.e. there exists a section φ of π such that ψ = j1φ,
and in addition φ satisfies the Euler-Lagrange equations. In Ref. 6, the De
Donder-Weyl equations were extended to the case of nonholonomic field
theories and take the following form:

ihΩL − nΩL ∈ I(F ) and Im h ⊂ TC,

where I(F ) is the ideal generated by F . These equations again specify a
connection on π1, whose integral sections are now the solutions of (2).

Remark 2.1. Throughout this paper, all Lagrangians are assumed to be
regular, in the sense that the associated Hessian is nonsingular. If this
is not the case, the correspondence between integral sections of the De
Donder-Weyl equation and solutions of the Euler-Lagrange equations is
not so straightforward.

3. Nonholonomic symmetries

Let G be a Lie group acting on π by bundle automorphisms, and assume
that G leaves invariant L, C and F , i.e. there exist smooth actions Φ :
G × Y → Y and Φ : G ×X → X such that π(Φ(g, y)) = Φ(g, π(y)) for all
g ∈ G and y ∈ Y . The Lie group G then also acts on J1π by prolonged
bundle automorphisms.

We consider first the bundle gF over Y , defined as follows: gF (y) is the
linear subspace of g consisting of all ξ ∈ g such that

j1ξY (γ) F = 0 for all γ ∈ C ∩ π−1
1,0(y), (3)
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where ξY is the infinitesimal generator of the action corresponding to ξ,
that is,

ξY (y) =
d
dt

∣∣∣
t=0

Φexp(tξ)(y).

Next, we assume that the disjoint union of all gF (y), for all y ∈ Y can
be given the structure of a vector bundle over Y , which we denote by gF .
Note that to any section ξ̄ of gF , one can associate a vector field ξ̃Y on Y

according to the following prescription:

ξ̃Y (y) =
[
ξ̄(y)

]
Y

(y). (4)

Definition 3.1. A nonholonomic symmetry is a section ξ̄ of gF such that
the associated vector field ξ̃Y is π-projectable; i.e. there exists a vector field
ξ̃X on X such that Tπ ◦ ξ̃Y = ξ̃X ◦ π.

The following lemma, taken from Ref. 4, will be useful in the proof of the
nonholonomic momentum equation.

Lemma 3.1. Let ξ̄ be a section of gF . For y ∈ Y , put ξ := ξ̄(y) and
consider any γ ∈ π−1

1,0(y) ∩ C. Then there exists a π1,0-vertical vector vγ ∈
TγJ

1π such that

j1ξ̃Y (γ) = j1ξY (γ) + vγ .

4. The nonholonomic momentum equation

Theorem 4.1. Let h be a solution of the nonholonomic De Donder-Weyl
equation and consider an integral section j1φ of h. Then for any nonholo-
nomic symmetry ξ̄ the associated component of the momentum map Jn.h.

ξ
satisfies the following nonholonomic momentum equation:

(j1φ)∗(dJn.h.
ξ

) = (j1φ)∗
(
Lj1ξ̃Y

(Lη)
)
.

Proof. Note first of all that if j1φ is an integral section of h, then the
following holds:

(j1φ)∗(dJn.h.
ξ

) = (j1φ)∗(dhJ
n.h.
ξ

).

Using lemma A.1, the h-derivative of Jn.h. on the right-hand side can be
expanded as follows.
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dhJ
n.h.
ξ

= (ihd− dih)ij1ξ̃Y
ΘL

= ihLj1ξ̃Y
ΘL − ihij1ξ̃Y

dΘL − dihij1ξ̃Y
ΘL

= ihLj1ξ̃Y
ΘL + ij1ξ̃Y

ihΩL + ih(j1ξ̃Y )dΘL − dihij1ξ̃Y
ΘL.

Each of these terms will now be treated separately. Bear in mind that we
will eventually pull back dhJ

n.h.
ξ

to X using a prolonged section j1φ: this
will get rid of all contact forms in the above expression, and for that purpose
we introduce the following equivalence relation: we say that two forms α
and β on J1π are equivalent (denoted by α ' β) if they agree up to a
contact form, i.e. α ' β iff α = β + θ, where θ is contact. Note that this is
equivalent to saying that (j1φ)∗α = (j1φ)∗β for all sections φ of π.

Term 1: ihLj1ξ̃Y
ΘL. Using lemma A.1, we have

ihLj1ξ̃Y
ΘL = Lj1ξ̃Y

ihΘL − i[j1ξ̃Y ,h]ΘL.

To the first term, lemma A.2 can be applied. The second term vanishes,
since [j1ξ̃Y ,h] takes values in V π1,0 (proposition 4.1) and ΘL is semi-basic.
In conclusion, term 1 is equal to

ihLj1ξ̃Y
ΘL = nLj1ξ̃Y

ΘL + Lj1ξ̃Y
(Lη).

Term 2: ij1ξ̃Y
ihΩL. The nonholonomic De Donder-Weyl equations give

us

ij1ξ̃Y
ihΩL = n ij1ξ̃Y

ΩL + ij1ξ̃Y
ζ ' n ij1ξ̃Y

ΩL,

since ζ belongs to I(F ), and hence can be written as ζ =
∑
α λ

α ∧ Φα, for
one-forms λα. The contraction of j1ξ̃Y with ζ then becomes

ij1ξ̃Y
ζ =

∑
α

(ij1ξ̃Y
λα)Φα −

∑
α

λα ∧ (ij1ξ̃Y
Φα).

The first term is contact, and the second term vanishes since j1ξ̃Y is ad-
missible.

Term 3: ih(j1ξ̃Y )dΘL. In the case of vertical symmetries, as treated in
Ref. 10, this term is automatically zero. In the general case, it is zero up to
a contact form; the proof is rather technical. More precisely, we will show
the following. If j1φ is an integral section of the nonholonomic connection
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h, then

(j1φ)∗(ih(j1ξ̃Y )dΘL) = 0.

Consider any such integral section j1φ, and fix a point x in X. Put y = φ(x)
and γ = j1xφ and define ξ as ξ(y). Then lemma 3.1 allows us to conclude
that

h(j1ξ̃(γ)) dΘL(γ) = h(j1ξY (γ)) dΘL(γ).

As j1ξY is projectable (onto ξX), the last term is equal to
Txj

1φ(ξX(x)) dΘL(γ).

For the pullback of term 3 under j1φ we therefore have[
(j1φ)∗(h(j1ξ̃Y ) dΘL)

]
x

= ξX(x)
[
(j1φ)∗dΘL

]
x
, (5)

but the right-hand side is zero since dΘL is an (n+ 2)-form pulled back to
an (n+ 1)-dimensional space.

Term 4: dihij1ξ̃Y
ΘL. Using lemma A.1, it follows that this term can be

rewritten as

dihij1ξ̃Y
ΘL = dij1ξ̃Y

ihΘL − dih(j1ξ̃Y )ΘL.

When considering the pullback of these terms under j1φ, a similar reasoning
as the one leading to (5) shows that

d(j1φ)∗(ih(j1ξ̃Y )ΘL) = d(ξX (j1φ)∗ΘL),

and this is in turn equal to d(ξX (j1φ)∗(Lη)), since ΘL ' Lη. Using again
lemma A.2, we conclude that

(j1φ)∗(dihij1ξ̃Y
ΘL) = n(j1φ)∗(dij1ξ̃Y

ΘL) + (j1φ)∗(dij1ξ̃Y
(Lη)

+ d(ξX (j1φ)∗(Lη)) = n(j1φ)∗(dij1ξ̃Y
ΘL).

Conclusion. Taking the pullback of dhJ
n.h.
ξ

under an integral section j1φ
of h, the foregoing allows us to write

(j1φ)∗(dhJ
n.h.
ξ

) = (j1φ)∗(Lj1ξ̃Y
(Lη)).

This is the desired form of the nonholonomic momentum equation.
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Appendix A. Technical lemmata

The proof of the nonholonomic momentum equation uses a number of rather
technical lemmata, which have been collected in this appendix.

Appendix A.1. The Fröhlicher-Nijenhuis bracket

The following lemma is a special case of lemma 8.6 in Ref. 11; a direct proof
can be found in Ref. 10. Recall that the contraction ihα of a 1-1 tensor h
with a k-form α is a k-form defined as follows:

(ihα)(v1, . . . , vk) =
k∑
i=1

(−1)i+1α(h(vi), v1, . . . , v̂i, . . . , vk).

This k-form will sometimes be denoted as h α.

Lemma A.1. Let X be a vector field on M and h a vector-valued one-form.
Then, for any k-form α on M , the following holds:

(1) iX ihα = ihiXα+ ih(X)α;
(2) ihLXα = LX ihα− i[X,h]α.

Appendix A.2. Semi-holonomic connections

Recall that a connection h on π1 is said to be semi-holonomic if ihθ = 0
for all contact forms θ on J1π. In coordinates, if h is locally represented as
in (1), then h is semi-holonomic if Γaµ = yaµ.

Lemma A.2. For each semi-holonomic connection Υ with horizontal pro-
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jector h, the following holds:

ihΘL = nΘL + Lη.

Proof. This is Lemma 1 in Ref. 10.

Proposition 4.1. Let X be a projectable vector field, and h a semi-
holonomic connection on π1. Then the Fröhlicher-Nijenhuis bracket [j1X,h]
is a vector-valued one-form taking values in V π1,0.

Proof. Let us write X in coordinates as

X = Xµ(x)
∂

∂xµ
+Xa(x, y)

∂

∂ya
,

and h as

h = dxµ ⊗
(

∂

∂xµ
+ Γaµ

∂

∂ya
+ Γaµν

∂

∂yaν

)
.

Note that Γaµ is equal to yaµ since h is semi-holonomic.

The bracket [j1X,h] is by definition just the Lie derivative Lj1Xh. Gener-
ally speaking, this vector-valued one-form takes values in TJ1π. A straight-
forward calculation shows that this form has the following expression:

Lj1Xh =

(
∂Xν

∂xµ
−
(

∂

∂xµ

)H
(Xν)

)
dxµ ⊗ ∂

∂xν

+

(
Γaν
∂Xν

∂xµ
+ j1X(Γaµ)−

(
∂

∂xµ

)H
(Xa)

)
dxµ ⊗ ∂

∂ya
(A.1)

+ (...)dxµ ⊗ ∂

∂yaν
,

where we have used the following short-hand notation to denote the hori-
zontal lift (with respect to the connection h) of a vector field on X:(

∂

∂xµ

)H
=

∂

∂xµ
+ Γaµ

∂

∂ya
+ Γaµν

∂

∂yaν
.

Expanding the terms between brackets now shows that the two first terms
of (A.1) vanish, meaning that [j1X,h] takes values in V π1,0.
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