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Abstract
Using a substructure coupling technique the problem of assigning anti resonances is reformulated as a pole
placement problem which can be analyzed in a more general framework. A possible approach to create these
points of zero vibration is by attaching passive undamped vibration absorbers. As this approach is sensitive
to changes in the excitation frequency, a robustness measure is proposed. Based on this measure, a better
understanding is provided regarding the attachment location of the absorber and the absorber mass.

1 Introduction

A common approach in vibration control is to extend the main system with a passive localized addition.
The term passive implies that no extra power is added to the system. In its simplest form this is realized
by attaching a single degree of freedom undamped spring-mass system as introduced by Frahm [1], i.e. the
dynamic absorber. When dealing with harmonic excitations, this device succeeds in suppressing the vibration
completely at the point of attachment. Further more, in a resonant condition the eigenfrequencies of the main
spring-mass system are shifted away from the disturbing excitation frequency, thereby creating a spectral
gap. In practice, damping is added to the absorber to make it robust against changes in the forcing frequency
and against uncertainties with respect to the physical implementation. A popular optimization procedure
is developed by Den Hartog [2]. Although nowadays Den Hartog’s approach is still popular, new and more
complex absorbers are investigated. Creating absorbers that allow for higher vibration reduction over a wider
frequency band forms a challenging problem. In the present paper the problem of vibration absorption is
addressed in a more general systems theoretical setting. The effect of passive undamped vibration absorbers
on the entire eigenfrequency spectrum of the system is studied. Changing the eigenfrequency spectrum
in a well-considered way allows to create anti resonances such that undesired excitation frequencies are
completely blocked.

In Section 2 we define a general framework for the pole allocation problem. Section 3 explains via a sub-
structure coupling technique that the creation of anti resonances is actually a pole allocation problem and
shows the restrictions on the obtainable spectrum. Section 4 discusses the influence of the mass and the at-
tachment location of the absorber on the robustness of the control technique. Section 5 contains an example.
The paper ends with a conclusion in Section 6.

2 Vibration control and passive absorbers

The mass-elastic systems under consideration are lumped parameter systems described by linear time invari-
ant (LTI) differential equations. A well established control technique is the allocation of poles. Therefore
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structural modifications and local additions of absorbers are classed in the general framework of pole place-
ment techniques for LTI systems. This is used among others by [3] and [4].

The lumped mass-elastic system to be controlled is modelled as

Mq̈ + Cq̇ + Kq = f (1)

with mass matrix M = M ′ ∈ Rn×n > 0, stiffness matrix K = K ′ ∈ Rn×n ≥ 0, damping matrix
C = C ′ ∈ Rn×n and external load f . q ∈ Rn is the vector of generalized coordinates. Consider na absorber
masses mai

, i = 1 . . . na. Let Ma ∈ Rna×na be the diagonal matrix containing all the absorber masses
and qa ∈ Rna the vector of generalized coordinates which configures the absorber masses. All generalized

coordinates are gathered in the vector q̂
4
=

[

q qa

]′
∈ Rn̂ with n̂ = n + na. We extend the matrices K and

C respectively to K̂ ∈ Rn̂×n̂ and Ĉ ∈ Rn̂×n̂ by adding rows and columns of zeros. A new block diagonal
matrix M̂ ∈ Rn̂×n̂ is defined as :

M̂
4
=

[

M

Ma

]

We only allow interconnections between absorber masses and lumped masses of the main system. An inter-
connection is a combination of a spring and a damper with constants kai

≥ 0 and cai
≥ 0. As a consequence

every counteracting force due to the effect of the absorber is proportional with relative displacements or rela-
tive velocities between the absorber and the main system. Absorber masses are not mutually connected. Let
Ka ∈ Rn̂×n̂ be the interconnecting stiffness matrix and Ca ∈ Rn̂×n̂ the interconnecting damping matrix.
The effect of the absorber can be formulated as a control force u :

u = −Kaq̂ − Ca
˙̂q (2)

We define the state vector x as :

x =

[

q̂
˙̂q

]

∈ R2n̂×2n̂

The control force (2) can be rewritten as :

u = −BFCsx (3)

The output vector y
4
=Csx contains all relative displacements and relative velocities that appear in the control

force. A row of the matrix F contains zeros and the spring and the damper constant of one interconnection
such that one component of vector Fy equals the total force due to one interconnection. The matrix B has
elements B(i, j) ∈ {−1, 0, 1} such that every force acts on the correct mass with the correct sign. Both B

and Cs follow from the geometry of the interconnections and the number of absorber masses na . We define
the matrices

As =

[

0 I

−M̂−1K̂ −M̂−1Ĉ

]

; Bs =

[

0

−M̂−1B̂

]

(4)

with unity matrix I ∈ Rn×n. The state space representation of the main system with absorber becomes :

ẋ = (As − BsFCs)x (5)

This clearly shows that the design of vibration absorbers can be interpreted as the design of a feedback matrix
F to allocate the poles of (5). Some optimization or performance measure can be defined to calculate F via
a numerical routine as in [3]. However, the choice of producing counteracting forces via absorbers restricts
the obtainable spectrum and the number of the poles to be assigned. The root loci of (5) can visualize these
restrictions.

The final purpose of vibration control is to minimize excessive vibration amplitudes. A possible approach is
the assignment of anti resonances, i.e. to create locations on the structure where the vibration is completely
blocked for one well-defined excitation frequency. In the following a substructure coupling technique is used
to reformulate the assignment of anti resonances to the problem of assigning resonances such that the general
form (5) can be used.



3 Assignment of anti resonances

Assigning anti resonances can be accomplished by structural modification [5, 6], where mass and stiffness
properties of the structure are altered. An alternative is the attachment of undamped vibration absorbers [7].
Here, a substructure coupling technique is used that allows to determine in a well-considered way the changes
of the structure needed to assign certain anti resonances. An important part in this matter is a thorough
understanding of the location and the amount of modification. The modification is restricted to attaching
vibration absorbers, although it could be extended to cope with structural modification as well.

Consider a structure modelled as an undamped multi-degree-of-freedom lumped mass-elastic system excited
with load vector f (Figure 1).
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Figure 1: Main system

The equations of motion (1), become:

Mq̈ + Kq = f (6)

Laplace transformation (zero initial conditions) yields:

Q(s) =
(

Ms2 + K
)−1

F (s) (7)

= H(s)F (s) (8)

with H the transfer function matrix. For a harmonic load f the transfer function matrix becomes:

H(ω) = (K − Mω2)−1 (9)

The (ij)th element of this symmetric matrix is written as Hij and denotes the transfer function between a
harmonic load fj applied at coordinate qj (exciter point) and the response at coordinate qi (receiver point).
The zeros of Hij are known as the anti resonances, the poles are known as the resonances or eigenfrequencies.
While the resonances are the same for each Hij , this is not true for the anti resonances.

3.1 Substructure coupling technique

The mass-elastic system given in Figure 1 is divided into three subsystems according to [8] (Figure 2). The
choice of the subsystems depends on the exciter point E (coordinate qj) and the receiver point R (coordinate
qi).
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Figure 2: Main system divided into three subsystems



3.1.1 The multi-degree-of-freedom absorber

In [8] the main system is divided into three subsystems according to figure 2 where subsystems A and C are
considered as multi-degree-of-freedom absorbers. It is shown that Hij , HRE can be written as:

Hij(ω) , HRE(ω) = αij

i−1
∏

k=1

(ω2 − µ̂2
k)

r
∏

k=1

(ω2 − µ̃2
k)

n
∏

k=1

(ω2 − µ2
k)

(10)

In (10) αij is a constant, µ̂k are the eigenfrequencies of subsystem A when grounded at spring ki−1, µ̃k

are the eigenfrequencies of subsystem C when grounded at spring kj and µk are the eigenfrequencies of the
overall system. Equation (10) shows that the anti resonances of HRE are made up by the eigenfrequencies
of the grounded subsystems A and C (as a consequence the number of anti resonances of HRE decreases as
the number of degrees of freedom in between R and E increases). Therefore, assigning anti resonances to
HRE is equivalent with assigning resonances to the grounded subsystems A and C.

3.1.2 Coupling technique exploring frequency response functions

A different substructure coupling technique is explained in [9]. Systems X and Y are coupled through a set
of coupling coordinates yielding the assembled system Z (Figure 3).
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Figure 3: Coupling systems X and Y

This method is interesting as it denotes the relation between the frequency response functions of the two
coupled systems X and Y and the frequency response functions of the overall system Z:

[HZ ]PP = [HX ]PP − [HX ]PS([HX ]SS + [HY ]SS)−1[HX ]SP (11)

[HZ ]PP = [HX ]PS([HX ]SS + [HY ]SS)−1[HY ]SS (12)

[HZ ]PT = [HX ]PS([HX ]SS + [HY ]SS)−1[HY ]ST (13)

[HZ ]SS = [HX ]SS([HX ]SS + [HY ]SS)−1[HY ]SS (14)

[HZ ]ST = [HX ]SS([HX ]SS + [HY ]SS)−1[HY ]ST (15)

[HZ ]TT = [HY ]TT − [HY ]TS([HX ]SS + [HY ]SS)−1[HY ]ST (16)

where S denotes the set of coupling coordinates, P and T denote the set of free coordinates corresponding
to systems X and Y respectively.

In Section 3.1.3 we apply this coupling technique subsequently to the system of Figure 2.



3.1.3 Coupling of three systems

First consider the main system of figure 2 as the coupling of two systems, system A and system (B+C). As
the right end of system A ends with a spring, we extend this system with a weightless attachment point WA

in order to make the coupling technique of Section 3.1.2 feasible (Figure 4).
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Figure 4: Coupling of subsystem A and subsystem (B+C)

HRE can be written as (dependence on ω is omitted):

HRE = [HA]WAWA

{

[HA]WAWA
+ [H(B+C)]RR

}−1
[H(B+C)]RE (17)

where [HA]WAWA
denotes the element corresponding to point WA in the frequency response function matrix

[HA]:

[HA] =















k1 − m1ω
2 −k1

−k1 k1 + k2 − m2ω
2 −k2

. . .
−ki−2 ki−2 + ki−1 − mi−1ω

2 −ki−1

−ki−1 ki−1















−1

(18)

, (KA − MAω2)−1 (19)

Next the system (B+C) is decoupled into B and C. Again a weightless attachment point WC is added at the
left of C (Figure 5).
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Figure 5: Coupling of subsystem B and subsystem C

[H(B+C)]RE becomes:

[H(B+C)]RE = [HB]RE {[HB]EE + [HC ]WCWC
}−1 [HC ]WCWC

(20)



with

[HB] =















ki − miω
2 −ki

−ki ki + ki+1 − mi+1ω
2 −ki+1

. . .
−kj−2 kj−2 + kj−1 − mj−1ω

2 −kj−1

−kj−1 kj−1 − mjω
2















−1

(21)

, (KB − MBω2)−1 (22)

[HC ] =















kj −kj

−kj kj + kj+1 − mj+1ω
2 −kj+1

. . .
−kn−2 kn−2 + kn−1 − mn−1ω

2 −kn−1

−kn−1 kn−1 − mnω2















−1

(23)

, (KC − MCω2)−1 (24)

By combining (17) and (20), HRE becomes:

HRE =
[HA]WAWA

[HB]RE [HC ]WCWC
{

[HA]WAWA
+ [H(B+C)]RR

}

{[HB]EE + [HC ]WCWC
}

(25)

Simplifying (25) shows that the anti resonances of HRE are given by the anti resonances of [HA]WAWA
,

[HB]RE and [HC ]WCWC
. This means the problem of assigning anti resonances to HRE is reduced to assign-

ing anti resonances to the subsystems A,B and C.

More precisely:

• The anti resonances of [HA]WAWA
are given by deleting both row and column corresponding to point

WA in (KA − MAω2) (19) and taking the determinant. Hence, the anti resonances of [HA]WAWA
are

given by the resonances of subsystem A when grounded at spring ki−1.

• The same analysis holds for subsystem C. The anti resonances of [HC ]WCWC
are given by the reso-

nances of subsystem C when grounded at spring kj .

• As R and E denote the first and last coordinate of subsystem B, [HB]RE has no anti resonances.

The same results as given in Section 3.1.1 are retrieved. However, in the subsequent analysis, HRE given by
(25) appears to be more useful than (10).

3.2 Assigning the anti resonances

As shown in Section 3.1, the analysis of assigning anti resonances to HRE can be divided into three parts
(25). As the analysis for subsystems A and C (Figure 2) appears quite similar, they are discussed together.

a) Subsystem B

Attaching an undamped vibration absorber anywhere along subsystem B (at coordinates qi to qj) creates
an anti resonance for HRE at the tuning frequency ω2

a = ka

ma
of the absorber. This can be seen from

(22). Assume without loss of generality a vibration absorber attached at coordinate v ′qB = qi+1 with



qB = [qi qi+1 · · · qj ]
′ and v = [0 1 0 · · · 0]′. This extends B with one degree of freedom. Equation (22)

becomes:

[HB] =













0
[KB + vv′ka − MBω2] −ka

0
0

0 −ka 0 · · · 0 ka − maω
2













−1

(26)

The anti resonances are given by the roots of the numerator of element [HB]RE in [HB]:

(−ki)(−ki+1(−ki+2) · · · (−kn − 1)(ka − maω
2) = 0 (27)

Hence, the absorber effectively blocks excitation signals with frequency ω = ωa.

Remark As [HB]RE in (25) has no anti resonances, changing the mass or stiffness properties of the struc-
ture (i.e. structural modification)in this area has no influence on the anti resonances of HRE . However, it
does change the resonances of the overall system. Therefore, vibration reduction can still be achieved by
shifting the resonances towards the anti resonances and thereby creating a pole-zero cancellation [10]. This
will not be discussed further on.

b) Subsystems A and C

Assigning anti resonances to [HA]WAWA
and [HC ]WCWC

corresponds to assigning resonances to the grounded
subsystems Ag and Cg (Figure 6).
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Figure 6: Grounded subsystems A and C

This means the resonances of Ag or Cg need to be shifted to the required anti resonances of HRE . This
defines a pole placement problem which can be analyzed through Section 2. Here we focus on the assign-
ment of one resonance by attaching a single-degree-of-freedom undamped vibration absorber. Attaching a
vibration absorber with coordinate qa, mass ma and stiffness ka to the main system at location v′q changes
the equations of motion given in (6) as follows:

Mq̈ + Kq + vka(v
′q − qa) = f (28)

maq̈a + ka(qa − v′q) = 0 (29)

Taking the Laplace transform (zero initial conditions) and eliminating qa yields:

Q(s) = Ĥ(s)F (s) (30)

where

Ĥ(s) =

{

Ms2 + K + v
makas

2

mas2 + ka
v′

}−1

(31)



Using the Sherman-Morrison matrix inversion theorem [12] the transfer function matrix given in (31) can be
rewritten as follows:

Ĥ(s) = H(s) − H(s)v

[

v′H(s)v +
mas

2 + ka

makas2

]−1

v′H(s) (32)

Pre and post multiplying of Eq. (32) with v′ and v respectively gives:

v′Ĥ(s)v = v′H(s)v − v′H(s)v

[

v′H(s)v +
mas

2 + ka

makas2

]−1

v′H(s)v (33)

or simplified:

v′Ĥ(s)v =
v′H(s)v

1 + σ(s)s2v′H(s)v
(34)

where

σ(s) =
maka

mas2 + ka
(35)

v′Ĥv is the transfer function between the generalized force at coordinate v ′q and its response at the same
coordinate. The resonances of the system with absorber are given by (s = jω):

1 −
makaω

2

ka − maω2
v′H(ω)v = 0 (36)

Solving for ka, equation (36) becomes:

ka =
maω

2

1 − maω2v′H(ω)v
(37)

As stated by [11], to obtain positive values for ka, the following inequality should be satisfied:

v′H(ω)v <
1

maω2
(38)

Given the attachment location v′q and the absorber mass ma, (38) shows that not every frequency can be
assigned as a resonance. However, decreasing ma relaxes the inequality and allows for a wider frequency
range to assign. Moreover, in the limit ma → 0 every resonance can be assigned.

4 Robustness

In the previous section it is outlined how anti resonances can be created for a certain frequency response
function HRE with an undamped vibration absorber. The main problem with this design is the potential lack
of robustness. A slight change of the excitation frequency could introduce a new resonant condition causing
excessive vibration amplitudes. As our main concern is vibration reduction, we seek the absorber design
with the highest robustness according to Proposition 4.1:

Proposition 4.1 Increasing the robustness of the absorber design implies increasing the minimal spectral
gap between the created anti resonance and its neighboring resonances resulting from (36).

In other words: When an anti resonance is created by attaching an absorber, the distance in frequency
between this anti resonance and the new resonances next to this anti resonance should be as large as possible.
Where ’as large as possible’ means with respect to the maximum allowable absorber mass and the available
attachment locations.
We recall the following theorem of Arnold, (1991), p. 253. [13]:



Theorem 4.1 Under an increase of rigidity of a system all characteristic frequencies are increased.

and state Theorem 4.2:

Theorem 4.2 Consider an undamped absorber attached at coordinate v ′q with tuning frequency ωa. In-
creasing the absorber mass shifts the resonances away from ωa in a monotone way. They can not be shifted
beyond the neighboring anti resonances of v′H(ω)v.

An extended proof is omitted here. The proof is based on Theorem 4.1, equation (34) and interlacing proper-
ties of the poles and zeros of v′Ĥ(ω)v and v′H(ω)v. Figure 7 shows the pole-zero maps of both v′H(ω)v and
v′Ĥ(ω)v for a certain absorber mass ma. The arrows illustrate the shift of the resonances as ma increases.
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Figure 7: (a) Without absorber: poles and zeros of v′H(ω)v; (b) With absorber: poles and zeros of
v′Ĥ(ω)v as a function of the absorber mass ma.

The influence of both the absorber mass ma and the attachment location v′q is analyzed according to Propo-
sition 4.1. We focus on resonant conditions, i.e. the excitation frequency equals one of the resonance
frequencies ωi of the main system. The analysis differs whether the absorber is attached at subsystem B or
at subsystems A and C.

4.1 Subsystem B

To obtain an anti resonance at ω = ωi, the tuning frequency ωa of the absorber should be taken according to
(27):

ωa = ωi (39)

This reduces the absorber design to the determination of two parameters, the absorber mass ma and the
attachment location v′q. According to Theorem 4.2 increasing the absorber mass increases the robustness



of the design as the neighboring resonances are shifted further away. The achievable shift can be analyzed
with the general framework explained in Section 2. Off course this increase is also limited due to practical
considerations.

The determination of the attachment location is less straightforward. When dealing with a sufficiently low
absorber mass and well separated resonances the single mode approach is valid [14]. This means the modal
form of v′H(ω)v:

v′H(ω)v = v′(K − Mω2)−1v (40)

=
n

∑

k=1

(v′ek)
2

ω2
k − ω2

(41)

with resonances ωk (k = 1, ..., n) and mass normalized eigenvectors ek (k = 1, ..., n) can be approximated
by:

v′H(ω)v ≈
(v′ei)

2

ω2
i − ω2

(42)

From Eq. (36) and (42) it can be seen that for a given mass ma, the shift of the resonances near ωi will
increase as (v′ei)

2 increases. We recover the well known result that an anti nodal location, i.e. the location
with the maximum value for |v′ei|, yields the best location.

When the single mode approach is not valid, other modes have to be taken into consideration. As an anti
resonance is to be created for ωi, the neighboring modes ωi−1 and ωi+1 have the highest influence. Therefore,
when determining the attachment location in this case, the mode activities |v ′ei−1| and |v′ei+1| will become
important. An alternative approach is looking at the neighboring anti resonances of ωi as these define the
limits for the shift of the new resonances (Theorem 4.2).

4.2 Subsystems A and C

As opposed to the analysis for subsystem B, the absorber’s parameters (ma, ωa and v′q) need to be deter-
mined in an integrated way as they all influence each other. As shown by (38), choosing the attachment
location v′q a priori limits the assignable resonances of these subsystems (assignable anti resonances for
the overall system) for a certain absorber mass ma and vice versa. Therefore we determine the attachment
location that leaves the widest freedom of choice for ma and ωa in assigning a certain resonance. Then ma

and ωa are determined in order to maximize the robustness (Proposition 4.1). The analysis is equivalent for
both subsystems A and C.

In the single mode approach the location with the maximum value for |v ′ei|, yields the best location. If this
single mode approach is not valid (e.g. a large absorber mass) a different analysis should be used. Figure 8
shows the alternating poles and zeros along the imaginary axis of v ′

AHAvA corresponding to subsystem A
(v′AqA denotes a location on A).
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Figure 8: Possible tuning frequencies ωa for the absorber to assign a certain frequency.

Assume a resonance frequency has to be assigned at the frequency indicated by the arrow. According to
Theorem 4.2 an absorber with tuning frequency ωa anywhere along the dotted line can assign this frequency.
For both A and C we determine the attachment location that maximizes the length of this dotted line. The
remaining parameters ma and ωa are chosen as follows. Increasing ma increases the robustness of the design
towards the overall system. The tuning frequency ωa is derived from (37).

4.3 Discussion

For each subsystem the absorber design is determined that maximizes the robustness w.r.t. changes in the
excitation frequency. The question remains where the absorber should be attached (subsystem A, B or C)
to obtain the overall maximal robustness. Intuitively one would assume subsystem B as in this region the
receiver point R and the exciter point E are located. However this is not clear a priori. An example regarding
this problem is given in Section 5.



5 Example

Consider an undamped spring-mass system (8 DOF) (Fig. 9). The excitation frequency at point E is equal
to ω2 (Table 1). For this frequency an anti resonance has to be assigned at point R.
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Figure 9: Spring-mass system with 8 degrees of freedom

Table 1: Modal parameters

Mass values (kg) Spring values (N/m) Resonances (rad/s)
m1 = 1 k1 = 1 ω1 = 0.131
m2 = 2 k2 = 2 ω2 = 0.409
m3 = 3 k3 = 4 ω3 = 0.730
m4 = 4 k4 = 3 ω4 = 1.115
m5 = 5 k5 = 1 ω5 = 1.184
m6 = 3 k6 = 2 ω6 = 1.600
m7 = 4 k7 = 3 ω7 = 1.699
m8 = 2 k8 = 2 ω8 = 2.245

The system is divided into three subsystems according to Section 3.1. For each subsystem the absorber
parameters (attachment location and tuning frequency ωa) are determined that maximize the robustness ac-
cording to Proposition 4.1. For the absorber mass, ma = 1 kg is taken. As we are dealing with a sufficiently
low absorber mass and well separated resonances, the single mode approach is valid. The eigenvector e2

(Table 2) corresponding to resonance ω2 indicates the best attachment location.

Table 2: Eigenvector e2

Location q1 q2 q3 q4 q5 q6 q7 q8

-0.192 -0.272 -0.289 -0.264 0.010 0.121 0.188 0.225

Table 3: Absorber parameters for subsystems A, B and C.

Subsystem Attachment location ωa (rad/s) Neighboring resonances (rad/s) Spectral gap (rad/s)
A q3 ωa = 0.422 0.360-0.481 0.049
B q4 ωa = 0.409 0.360-0.467 0.049

q6 ωa = 0.409 0.389-0.438 0.020
C q8 ωa = 0.465 0.381-0.489 0.028



The results are summarized in Table 3. The robustness is determined by the minimal spectral gap between
the anti resonance (0.409 rad/s) and its neighboring resonances. This is shown in the last column of Table
3. As could be expected, attaching the absorber at the receiver point yields the best result. However, the
absorber attached at q3 in subsystem A achieves the same robustness.

6 Conclusion

We discussed the ability of passive undamped vibration absorbers to create anti resonances for a mass elastic
system as this is an important option in vibration control. A substructure coupling technique showed the
equivalence between the assignment of anti resonances and the assignment of resonances. Therefore the de-
sign of passive vibration absorbers was fitted into the general pole allocation problem of linear time invariant
systems.

Robustness was an important issue. It was defined as avoiding the situation where a desired anti resonance is
very close to a neighboring resonance such that some variation on the excitation frequency can be allowed.
The choice of the location of the absorber as well as the absorber mass were shown to have significant
influence in this matter.
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